People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Elmahdy, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Impact-dynamic properties of aromatic hyperbranched polyester/RTM6 epoxy nanocompositescitations
- 2022In-depth analysis of the high strain rate compressive behavior of RTM6 epoxy using digital image correlationcitations
- 2021Fracture mechanisms in flat and cylindrical tensile specimens of TRIP-TWIP β-metastable Ti-12Mo alloycitations
- 2021Effect of strain rate and silica filler content on the compressive behavior of RTM6 epoxy-based nanocompositescitations
- 2020A cohesive-based method to bridge the strain rate effect and defects of RTM-6 epoxy resin under tensile loadingcitations
- 2020Mechanical behavior of basalt and glass textile composites at high strain rates : a comparisoncitations
- 2020Comparison between the mechanical behavior of woven basalt and glass epoxy composites at high strain ratescitations
- 2020Aromatic Hyperbranched Polyester/RTM6 Epoxy Resin for EXTREME Dynamic Loading Aeronautical Applicationscitations
- 2019Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditionscitations
- 2019Tensile behavior of woven basalt fiber reinforced composites at high strain ratescitations
- 2018Effect of silica nanoparticles on the compressive behavior of RTM6 epoxy resin at different strain rates
- 2018Tensile behavior of basalt fiber reinforced composites at high strain rates
- 2018The use of 2D and 3D high-speed digital image correlation in full field strain measurements of composite materials subjected to high strain ratescitations
- 2018Compressive behavior of epoxy resin filled with silica nanoparticles at high strain rate
- 2018The Use of 2D and 3D High-Speed Digital Image Correlation in Full Field Strain Measurements of Composite Materials Subjected to High Strain Ratescitations
- 2017High strain rate testing of fibre-reinforced composites
Places of action
Organizations | Location | People |
---|
article
In-depth analysis of the high strain rate compressive behavior of RTM6 epoxy using digital image correlation
Abstract
The aim of this paper is to study the effect of strain rate on the compressive behavior of the highly cross-linked RTM6 epoxy resin used in advanced aerospace composites. Dynamic compression tests were performed using a split Hopkinson pressure bar, along with reference quasi-static compression tests, to cover a strain rate range from 0.001 to 1035 s−1. Special attention was paid to the optimization of the test methodologies in order to obtain material data free of bias related to the use of different load introduction techniques and sample geometries over the considered strain rate range. In addition, the use of full-field 3D deformation measurements allowed the validation of traditional test and material assumptions. A novel self-alignment tool was developed to enable perfect interfacial contact during compression loading. The 3D digital image correlation technique was used to measure the instantaneous deformation of the sample during compression at different strain rates. Results showed a pronounced strain rate sensitivity of the RTM6 epoxy in compression. The peak yield strength increased with increasing strain rate, while the elastic modulus and Poisson’s ratio in compression were independent of the strain rate. The barreling of the sample in compression, quantified by the barreling ratio, showed an increase during the progression of the compression tests. However, the barreling ratio significantly decreased with the increasing strain rate. Finally, it was shown that neglecting the significant volume change in the yield stages gave rise to a non-negligible underestimation of the strength of the material.