Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rezende, Michelle Jakeline Cunha

  • Google
  • 2
  • 6
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonite13citations
  • 2019Synthesis and Application of H-ZSM-5 Zeolites with Different Levels of Acidity as Synergistic Agents in Flame Retardant Polymeric Materials11citations

Places of action

Chart of shared publication
Nascimento, Marco Antonio Chaer
1 / 2 shared
Batistella, Marcos
1 / 22 shared
Lopez-Cuesta, José-Marie
1 / 67 shared
Martins, Raíssa Carvalho
1 / 2 shared
Nascimento, Regina Sandra Veiga
2 / 3 shared
Bernardes, Felipe Reis
1 / 1 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Nascimento, Marco Antonio Chaer
  • Batistella, Marcos
  • Lopez-Cuesta, José-Marie
  • Martins, Raíssa Carvalho
  • Nascimento, Regina Sandra Veiga
  • Bernardes, Felipe Reis
OrganizationsLocationPeople

article

Flame-Retarding Properties of Injected and 3D-Printed Intumescent Bio-Based PLA Composites: The Influence of Brønsted and Lewis Acidity of Montmorillonite

  • Nascimento, Marco Antonio Chaer
  • Batistella, Marcos
  • Lopez-Cuesta, José-Marie
  • Rezende, Michelle Jakeline Cunha
  • Martins, Raíssa Carvalho
  • Nascimento, Regina Sandra Veiga
Abstract

<jats:p>The influence of processing intumescent bio-based poly(lactic acid) (PLA) composites by injection and fused filament fabrication (FFF) was evaluated. A raw (ANa) and two acidic-activated (AH2 and AH5) montmorillonites were added to the intumescent formulation, composed by lignin and ammonium polyphosphate, in order to evaluate the influence of the strength and the nature (Brønsted or Lewis) of their acidic sites on the fire behavior of the composites. The thermal stability and the volatile thermal degradation products of the composites were assessed. The injected and 3D-printed composites were submitted to cone calorimeter (CC), limit oxygen index (LOI), and UL-94 flammability tests. A similar tendency was observed for the injected and 3D-printed samples. The high density of strong Lewis sites in AH2 showed to be detrimental to the fire-retarding properties. For the CC test, the addition of the intumescent composite reduced the peak of heat released (pHRR) in approximately 49% when compared to neat PLA, while the composites containing ANa and AH5 presented a reduction of at least 54%. However, the addition of AH2 caused a pHRR reduction of around 47%, close to the one of the composite without clay (49%). In the LOI tests, the composites containing ANa and AH5 achieved the best results: 39% and 35%, respectively, for the injected samples, and 35 and 38% for the 3D-printed samples. For the composite containing AH2 the LOI values were 34% and 32% for injected and 3D-printed samples, respectively. Overall, the best performance in the flammability tests was achieved by the composites containing clays with only weak and moderate strength acidic sites (ANa and AH5).</jats:p>

Topics
  • density
  • Oxygen
  • strength
  • composite
  • lignin
  • field-flow fractionation
  • flammability
  • oxygen index