Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lauro, Alessandro Espedito Di

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Mechanical Behavior of Alkasite Posterior Restorations in Comparison to Polymeric Materials7citations

Places of action

Chart of shared publication
Jpm, Tribst
1 / 88 shared
Testarelli, Luca
1 / 3 shared
Garcia-Godoy, Franklin
1 / 5 shared
Ausiello, Pietro
1 / 18 shared
Dal Piva, Amanda
1 / 41 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Jpm, Tribst
  • Testarelli, Luca
  • Garcia-Godoy, Franklin
  • Ausiello, Pietro
  • Dal Piva, Amanda
OrganizationsLocationPeople

article

Mechanical Behavior of Alkasite Posterior Restorations in Comparison to Polymeric Materials

  • Jpm, Tribst
  • Lauro, Alessandro Espedito Di
  • Testarelli, Luca
  • Garcia-Godoy, Franklin
  • Ausiello, Pietro
  • Dal Piva, Amanda
Abstract

<p>The present investigation evaluated the effect of the combination of different dental filling materials in Class I cavities under occlusal loading using three-dimensional finite elements analysis (FEA). Six computer-generated and restored models of a lower molar were created in the CAD software and compared according to the biomechanical response during chewing load condition. Two adhesively bonded bulk restorative materials [bulk-fill resin composite (BF) or Alkasite (Alk)] were evaluated with or without the presence of a base material below (flowable resin composite or glass ionomer cement). A food bolus was placed on the occlusal surface mimicking the compressive occlusal load (600 N) during the static linear analysis. The maximum principal stress (tensile) was calculated as stress criteria in enamel, dentin and restoration. All models showed high stresses along the enamel/restoration margin with a similar stress trend for models restored with the same upper-layer material. Stress values up to 12.04 MPa (Alk) or up to 11.12 MPa (BF) were recorded at the enamel margins. The use of flexible polymeric or ionic base material in combination with bulk-fill resin composite or Alk did not reduce the stress magnitude in dentine and enamel. Class I cavities adhesively restored with bulk-fill resin composite showed lighter stress concentration as well as Alk. Therefore, adhesively bonded Alk restoration showed a promising mechanical behavior when used with different base materials or as a bulk restoration for posterior Class I cavity.</p>

Topics
  • surface
  • glass
  • glass
  • composite
  • cement
  • resin
  • finite element analysis
  • collision-induced dissociation