People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pamfil, Daniela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Effect of Gamma Irradiation on the PLA-Based Blends and Biocomposites Containing Rosemary Ethanolic Extract and Chitosancitations
- 2020Radiation Processing and Characterization of Some Ethylene-propylene-diene Terpolymer/Butyl (Halobutyl) Rubber/Nanosilica Compositescitations
- 2018Evaluation of the Rosemary Extract Effect on the Properties of Polylactic Acid-Based Materialscitations
- 2018Effects of Electron Beam Irradiation on the Mechanical, Thermal, and Surface Properties of Some EPDM/Butyl Rubber Compositescitations
Places of action
Organizations | Location | People |
---|
article
Effect of Gamma Irradiation on the PLA-Based Blends and Biocomposites Containing Rosemary Ethanolic Extract and Chitosan
Abstract
<jats:p>The irradiation of polymeric materials with ionizing radiation (γ-rays, X-rays, accelerated electrons, ion beams, etc.) may lead to disproportion, hydrogen abstraction, arrangements, degradation, and/or the formation of new bonds. The purpose of this paper is to evaluate the effect of gamma irradiation on some new poly(lactic acid) (PLA)-based blends and biocomposites, which is crucial when they are used for food packaging or medical purposes. The polymeric blends and biocomposites based on PLA and rosemary ethanolic extract (R) and poly(ethylene glycol) (PEG) (20 wt%) plasticized PLA, chitosan (CS) (3–6 wt%) and R (0.5 wt%) biocomposites were subjected to gamma irradiation treatment using three low γ-doses of 10, 20, and 30 kGy. The effect of irradiation was evaluated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), thermogravimetry (TG), chemiluminescence method (CL), migration studies, and antibacterial activity tests. It was found that in comparison with neat PLA, the gamma irradiation in the oxidative conditions of the PLA-based blends and biocomposites, causes modifications in the structure, morphology, and thermal properties of the materials depending on irradiation dose and the presence of natural additives such as rosemary and chitosan. It was established that under a gamma-irradiation treatment with dose of 10–20 kGy, the PLA materials showed minor changes in structure and properties being suitable for application in packaging and in addition after irradiation with such doses their antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium is improved.</jats:p>