Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kanbur, Baris Burak

  • Google
  • 3
  • 7
  • 53

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Experimental indirect cooling performance analysis of the metal 3D-printed cold plates with two different supporting elements4citations
  • 2022Experimental Cooling Performance Analysis of The Metal Additive-Manufactured Cold Plate With Body-Centered Cubic (BCC) Elements for Indirect Cooling Applicationscitations
  • 2022Metal Additive Manufacturing of Plastic Injection Molds with Conformal Cooling Channels49citations

Places of action

Chart of shared publication
Seat, Mun Hoe
1 / 1 shared
Duan, Fei
1 / 1 shared
Kærn, Martin Ryhl
2 / 5 shared
Markussen, Wiebke Brix
2 / 3 shared
Zhou, Y.
1 / 25 shared
Seat, M. H.
1 / 2 shared
Duan, F.
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Seat, Mun Hoe
  • Duan, Fei
  • Kærn, Martin Ryhl
  • Markussen, Wiebke Brix
  • Zhou, Y.
  • Seat, M. H.
  • Duan, F.
OrganizationsLocationPeople

article

Metal Additive Manufacturing of Plastic Injection Molds with Conformal Cooling Channels

  • Kanbur, Baris Burak
Abstract

<jats:p>Conformal cooling channels (CCCs) are widely used in the plastic injection molding process to improve the product quality and operational performance. Tooling that incorporates CCCs can be fabricated through metal additive manufacturing (MAM). The present work focuses on the MAM of a plastic injection mold insert with different CCC types that are circular, serpentine, and tapered channels with/without body-centered cubic (BCC) lattices. The entire manufacturing process of the mold insert is explained from the design step to the final printing step including the computational thermal &amp; mechanical simulations, performance assessments, and multiobjective optimization. Compared to the traditional channels, conformal cooling channels achieved up to 62.9% better cooling performance with a better thermal uniformity on the mold surface. The optimum mold geometry is decided using the multiobjective optimization procedure according to the multiple objectives of cooling time, temperature non-uniformity, and pressure drop in the channel. Direct Metal Laser Sintering (DMLS) method is used for manufacturing the molds and the quality of the printed molds are analyzed with the X-ray Computed Tomography (X-ray CT) technique. The errors between the design and the printed parameters are less than 5% for the circular and tapered channels while the maximum deviation of the strut diameters of the BCC is 0.06 mm.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • simulation
  • tomography
  • laser emission spectroscopy
  • injection molding
  • sintering
  • laser sintering