People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Norrrahim, Mohd Nor Faiz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Effects of nanofillers on the physical, mechanical, and tribological behavior of carbon/kenaf fiber–reinforced phenolic compositescitations
- 2022Fabrication of a Nickel Ferrite/Nanocellulose-Based Nanocomposite as an Active Sensing Material for the Detection of Chlorine Gascitations
- 2022Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applicationscitations
- 2022Effect of Agar on the Mechanical, Thermal, and Moisture Absorption Properties of Thermoplastic Sago Starch Compositescitations
- 2021Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a reviewcitations
- 2019Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scalecitations
Places of action
Organizations | Location | People |
---|
article
Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications
Abstract
<jats:p>Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.</jats:p>