People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sydor, Maciej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Mycelium-Based Composite Materials: Study of Acceptancecitations
- 2023Thermochemical modification of beech wood with ammonium hydroxidecitations
- 2022Withdrawal Resistance of T-Nuts in Various Furniture Materialscitations
- 2021Mycelium-Based Composites in Art, Architecture, and Interior Design: A Reviewcitations
- 2019Load-bearing capacity and characteristic forms of destruction of furniturejoints made with rastex 15 and P-10 clamex fastenerscitations
- 2019The Accuracy of Holes Drilled in the Side Surface of Plywoodcitations
- 2019Shape stability of chosen thin wood based panels after heating
Places of action
Organizations | Location | People |
---|
article
Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review
Abstract
<jats:p>Mycelium-based composites (MBCs) have attracted growing attention due to their role in the development of eco-design methods. We concurrently analysed scientific publications, patent documents, and results of our own feasibility studies to identify the current design issues and technologies used. A literature inquiry in scientific and patent databases (WoS, Scopus, The Lens, Google Patents) pointed to 92 scientific publications and 212 patent documents. As a part of our own technological experiments, we have created several prototype products used in architectural interior design. Following the synthesis, these sources of knowledge can be concluded: 1. MBCs are inexpensive in production, ecological, and offer a high artistic value. Their weaknesses are insufficient load capacity, unfavourable water affinity, and unknown reliability. 2. The scientific literature shows that the material parameters of MBCs can be adjusted to certain needs, but there are almost infinite combinations: properties of the input biomaterials, characteristics of the fungi species, and possible parameters during the growth and subsequent processing of the MBCs. 3. The patent documents show the need for development: an effective method to increase the density and the search for technologies to obtain a more homogeneous internal structure of the composite material. 4. Our own experiments with the production of various everyday objects indicate that some disadvantages of MBCs can be considered advantages. Such an unexpected advantage is the interesting surface texture resulting from the natural inhomogeneity of the internal structure of MBCs, which can be controlled to some extent.</jats:p>