People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdo, Hany S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Investigating the Mechanical Properties of Annealed 3D-Printed PLA–Date Pits Compositecitations
- 2023Adaptive Neuro-Fuzzy-Based Models for Predicting the Tribological Properties of 3D-Printed PLA Green Composites Used for Biomedical Applicationscitations
- 2023Investigation of the Mechanical and Tribological Behavior of Epoxy-Based Hybrid Compositecitations
- 2023Hydroxyapatite–Clay Composite for Bone Tissue Engineering: Effective Utilization of Prawn Exoskeleton Biowastecitations
- 2023Ecofriendly Biochar as a Low-Cost Solid Lubricating Filler for LDPE Sustainable Biocomposites: Thermal, Mechanical, and Tribological Characterizationcitations
- 2023Casting light on the tribological properties of paraffin-based HDPE enriched with graphene nano-additives: an experimental investigationcitations
- 2023Effect of Synthesized Titanium Dioxide Nanofibers Weight Fraction on the Tribological Characteristics of Magnesium Nanocomposites Used in Biomedical Applicationscitations
- 2022Mechanical Alloying of Ball-Milled Cu–Ti–B Elemental Powder with the In Situ Formation of Titanium Diboridecitations
- 2022Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatingscitations
- 2022Study on the Microstructure of Vanadium-Modified Tungsten High-Speed Steel-Coded SAE-AISI T1 Steelcitations
- 2021Electrochemical Corrosion Behavior of Laser Welded 2205 Duplex Stainless-Steel in Artificial Seawater Environment under Different Acidity and Alkalinity Conditionscitations
- 2021Mitigating Corrosion Effects of Ti-48Al-2Cr-2Nb Alloy Fabricated via Electron Beam Melting (EBM) Technique by Regulating the Immersion Conditionscitations
- 2021Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofiberscitations
- 2020The Cyclic Oxidation and Hardness Characteristics of Thermally Exposed Titanium Prepared by Inductive Sintering-Assisted Powder Metallurgycitations
- 2020Influence of Extrusion Temperature on the Corrosion Behavior in Sodium Chloride Solution of Solid State Recycled Aluminum Alloy 6061 Chipscitations
- 2020Regulating Mechanical Properties of Al/SiC by Utilizing Different Ball Milling Speedscitations
- 2017Effect of Nickel Content on the Corrosion Resistance of Iron-Nickel Alloys in Concentrated Hydrochloric Acid Pickling Solutionscitations
- 2015Corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquidscitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofibers
Abstract
<jats:p>This study is focuses on the investigation of the effect of using TiO2 short nanofibers as a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites. The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel process, then calcinated at a high temperature to evaporate the residual polymers. The fabricated nanocomposites contain 0, 1, 3 and 5 wt.% of synthesized ceramic nanofibers (TiO2). Powder mixtures were mixed for 1 h via high-energy ball milling in a vacuum atmosphere before being inductively sintered through a high-frequency induction furnace at 560 °C for 6 min. The microstructure of the fabricated samples was studied by optical microscope and field emission scanning electron microscope (FESEM) before and after corrosion studies. Corrosion behavior of the sintered samples was evaluated by both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PPT) in 3.5% NaCl solution for one hour and 24-h immersion times. The results show that even though the percentage of ceramic nanofibers added negatively control corrosion resistance, it is still possible to increase resistance against corrosion for the fabricated nanocomposite by more than 75% in the longer exposure time periods.</jats:p>