People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Iliopoulos, Ilias
Processes and Engineering in Mechanics and Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Anomalous hydraulic fluid absorption by carbon fiber/PEKK composites: physical and mechanical aspects
- 2023Role of the inter‐ply microstructure in the consolidation quality of high‐performance thermoplastic compositescitations
- 2022Thermal and Crystallization Properties of the Alternated Tere/Iso PEKK Copolymer: Importance in High-Temperature Laser Sinteringcitations
- 2022Effect of water sorption in neat poly(ether ketone ketone) and its carbon fiber reinforced composite
- 2022Consolidation of continuous-carbon-fiber-reinforced PAEK composites: a reviewcitations
- 2022EFFECT OF AERONAUTIC FLUID SKYDROL ON NEAT POLY(ETHER KETONE KETONE) AND ITS CARBON FIBER REINFORCED COMPOSITE
- 2021Dual transient networks of polymer and micellar chains: structure and viscoelastic synergy ; Doubles réseaux transitoires de polymères et de micelles: structure et synergie viscoélastiquecitations
- 2021Dual Transient Networks of Polymer and Micellar Chains: Structure and Viscoelastic Synergycitations
- 2021Quantitative Structural Study of Cold-Crystallized PEKKcitations
Places of action
Organizations | Location | People |
---|
article
Dual Transient Networks of Polymer and Micellar Chains: Structure and Viscoelastic Synergy
Abstract
<jats:p>Dual transient networks were prepared by mixing highly charged long wormlike micelles of surfactants with polysaccharide chains of hydroxypropyl guar above the entanglement concentration for each of the components. The wormlike micelles were composed of two oppositely charged surfactants potassium oleate and n-octyltrimethylammonium bromide with a large excess of anionic surfactant. The system is macroscopically homogeneous over a wide range of polymer and surfactant concentrations, which is attributed to a stabilizing effect of surfactants counterions that try to occupy as much volume as possible in order to gain in translational entropy. At the same time, by small-angle neutron scattering (SANS) combined with ultrasmall-angle neutron scattering (USANS), a microphase separation with the formation of polymer-rich and surfactant-rich domains was detected. Rheological studies in the linear viscoelastic regime revealed a synergistic 180-fold enhancement of viscosity and 65-fold increase of the longest relaxation time in comparison with the individual components. This effect was attributed to the local increase in concentration of both components trying to avoid contact with each other, which makes the micelles longer and increases the number of intermicellar and interpolymer entanglements. The enhanced rheological properties of this novel system based on industrially important polymer hold great potential for applications in personal care products, oil recovery and many other fields.</jats:p>