People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferdous, Wahid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete
- 2021Investigation on the physical, mechanical and microstructural properties of epoxy polymer matrix with crumb rubber and short fibres for composite railway sleeperscitations
- 2021Design considerations for prefabricated composite jackets for structural repaircitations
- 2021Shear behaviour of hollow precast concrete-composite structurescitations
- 2021Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environmentscitations
- 2021Mechanical properties of macro polypropylene fibre-reinforced concretecitations
- 2021Static behaviour of glass fibre reinforced novel composite sleepers for mainline railway trackcitations
- 2021Novel bending test method for polymer railway sleeper materialscitations
- 2021Failure analysis and the effect of material properties on the screw pull-out behaviour of polymer composite sleeper materialscitations
- 2020Behavior of circular concrete columns reinforced with hollow composite sections and GFRP barscitations
- 2020Optimal design for epoxy polymer concrete based on mechanical properties and durability aspectscitations
- 2020Characteristics, strength development and microstructure of cement mortar containing oil-contaminated sandcitations
- 2020A New Design-Oriented Model of Glass Fiber-Reinforced Polymer-Reinforced Hollow Concrete Columnscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical properties of macro polypropylene fibre-reinforced concrete
Abstract
Adding fibers to concrete helps enhance its tensile strength and ductility. Synthetic fibres are preferable to steel ones which suffer from corrosion that reduces their functionality with time. More consideration is given to synthetic fibres as they can be sourced from waste plastics and their incorporation in concrete is considered a new recycling pathway. Thus, this work investigates the potential engineering benefits of a pioneering application using extruded macro polyfibres in concrete. Two different fiber dosages, 4 kg/m3 and 6 kg/m3, were used to investigate their influence based on several physical, mechanical and microstructural tests, including workability, compressive strength, modulus of elasticity, splitting-tensile strength, flexural test, CMOD, pull-out test and porosity. The test results revealed a slight decrease in the workability of the fibre-reinforced concrete, while all the mechanical and microstructural properties were enhanced significantly. It was observed that the compressive, splitting tensile and bonding strength of the concrete with 6 kg/m3 fibre dosage increased by 19.4%, 41.9% and 17.8% compared to the plain concrete specimens, respectively. Although there was no impact of the fibres on the modulus of rupture, they significantly increased the toughness, resulting in a progressive type of failure instead of the sudden and brittle type. Moreover, the macroporosity was reduced by the fibre addition, thus increasing the concrete compressive strength. Finally, simplified empirical formulas were developed to predict the mechanical properties of the concrete with fibre addition. The outcome of this study will help to increase the implementation of the recycled plastic waste in concrete mix design and promote a circular economy in the waste industry