Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pangallo, Domenico

  • Google
  • 1
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Properties and Degradation Performances of Biodegradable Poly(lactic acid)/Poly(3-hydroxybutyrate) Blends and Keratin Composites16citations

Places of action

Chart of shared publication
Puškárová, Andrea
1 / 1 shared
Vykydalová, Anna
1 / 4 shared
Mosnáčková, Katarína
1 / 1 shared
Kleinová, Angela
1 / 3 shared
Bujdoš, Marek
1 / 2 shared
Mosnacek, Jaroslav
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Puškárová, Andrea
  • Vykydalová, Anna
  • Mosnáčková, Katarína
  • Kleinová, Angela
  • Bujdoš, Marek
  • Mosnacek, Jaroslav
OrganizationsLocationPeople

article

Properties and Degradation Performances of Biodegradable Poly(lactic acid)/Poly(3-hydroxybutyrate) Blends and Keratin Composites

  • Puškárová, Andrea
  • Vykydalová, Anna
  • Mosnáčková, Katarína
  • Kleinová, Angela
  • Bujdoš, Marek
  • Pangallo, Domenico
  • Mosnacek, Jaroslav
Abstract

<jats:p>From environmental aspects, the recovery of keratin waste is one of the important needs and therefore also one of the current topics of many research groups. Here, the keratin hydrolysate after basic hydrolysis was used as a filler in plasticized polylactic acid/poly(3-hydroxybutyrate) blend under loading in the range of 1–20 wt%. The composites were characterized by infrared spectroscopy, and the effect of keratin on changes in molar masses of matrices during processing was investigated using gel permeation chromatography (GPC). Thermal properties of the composites were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of keratin loading on the mechanical properties of composite was investigated by tensile test and dynamic mechanical thermal analysis. Hydrolytic degradation of matrices and composites was investigated by the determination of extractable product amounts, GPC, DSC and NMR. Finally, microbial growth and degradation were investigated. It was found that incorporation of keratin in plasticized PLA/PHB blend provides material with good thermal and mechanical properties and improved degradation under common environmental conditions, indicating its possible application in agriculture and/or packaging.</jats:p>

Topics
  • impedance spectroscopy
  • composite
  • thermogravimetry
  • differential scanning calorimetry
  • Nuclear Magnetic Resonance spectroscopy
  • infrared spectroscopy
  • gel filtration chromatography