Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Farooq, Shehna

  • Google
  • 1
  • 5
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Exploring the functional properties of sodium phytate doped polyaniline nanofibers modified fto electrodes for high-performance binder free symmetric supercapacitors17citations

Places of action

Chart of shared publication
Röse, Philipp
1 / 5 shared
Shah, Anwar Ul Haq Ali
1 / 5 shared
Krewer, Ulrike
1 / 13 shared
Rahman, Sami Ur
1 / 1 shared
Bilal, Salma
1 / 9 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Röse, Philipp
  • Shah, Anwar Ul Haq Ali
  • Krewer, Ulrike
  • Rahman, Sami Ur
  • Bilal, Salma
OrganizationsLocationPeople

article

Exploring the functional properties of sodium phytate doped polyaniline nanofibers modified fto electrodes for high-performance binder free symmetric supercapacitors

  • Farooq, Shehna
  • Röse, Philipp
  • Shah, Anwar Ul Haq Ali
  • Krewer, Ulrike
  • Rahman, Sami Ur
  • Bilal, Salma
Abstract

The performance of high-rate supercapacitors requires fine morphological and electrical properties of the electrode. Polyaniline (PANI), as one of the most promising materials for energy storage, shows different behaviour on different substrates. The present study reports on the surface modification of fluorine doped tin oxide (FTO) with the sodium phytate doped PANI without any binder and its utilization as a novel current collector in symmetric supercapacitor devices. The electrochemical behaviour of the sodium phytate doped PANI thin film with and without a binder on fluorine doped tin oxide (FTO) as current collector was investigated by cyclic voltammetry (CV). The electrode without a binder showed higher electrocatalytic efficiency. A symmetrical cell configuration was therefore constructed with the binder-free electrodes. The device showed excellent electrochemical performance with high specific capacities of 550 Fg$^{-1}$ at 1 Ag$^{-1}$ and 355 Fg$^{-1}$ at 40 Ag$^{-1}$ calculated from galvanostatic discharge curves. The low charge transfer and solution resistances (RCT and RS) of 7.86 Ωcm² and 3.58 × 10−1 Ωcm², respectively, and superior rate capability of 66.9% over a wide current density range of 1 Ag$^{-1}$ to 40 Ag$^{-1}$ and excellent cycling stability with 90% of the original capacity over 1000 charge/discharge cycles at 40 Ag$^{-1}$, indicated it to be an efficient energy storage device. Moreover, the gravimetric energy and power density of the supercapacitor was remarkably high, providing 73.8 Whkg$^{-1}$ at 500 Wkg$^{-1}$, respectively. The gravimetric energy density remained stable as the power density increased. It even reached up to 49.4 Whkg$^{-1}$ at a power density of up to 20 Wkg$^{-1}$.

Topics
  • density
  • surface
  • energy density
  • thin film
  • Sodium
  • current density
  • tin
  • cyclic voltammetry