Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Markiewicz, Grzegorz

  • Google
  • 1
  • 7
  • 9

Adam Mickiewicz University in Poznań

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Study9citations

Places of action

Chart of shared publication
Pakuła, Daria
1 / 12 shared
Brząkalski, Dariusz
1 / 14 shared
Sztorch, Bogna
1 / 23 shared
Marciniec, Bogdan
1 / 14 shared
Przekop, Robert
1 / 35 shared
Jałbrzykowski, Marek
1 / 8 shared
Frydrych, Miłosz
1 / 10 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Pakuła, Daria
  • Brząkalski, Dariusz
  • Sztorch, Bogna
  • Marciniec, Bogdan
  • Przekop, Robert
  • Jałbrzykowski, Marek
  • Frydrych, Miłosz
OrganizationsLocationPeople

article

Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Study

  • Pakuła, Daria
  • Brząkalski, Dariusz
  • Sztorch, Bogna
  • Marciniec, Bogdan
  • Przekop, Robert
  • Jałbrzykowski, Marek
  • Markiewicz, Grzegorz
  • Frydrych, Miłosz
Abstract

<jats:p>In this work, a series of silsesquioxanes (SSQ) and spherosilicates (SS), comprising a group of cage siloxane (CS) compounds, was tested as functional additives for preparation of isotactic polypropylene (iPP)-based nanocomposites and discussed in the aspect of their rationale of applicability as such additives. For this purpose, the compounds were prepared by condensation and olefin hydrosilylation reactions. The effect of these cage siloxane products on properties of obtained CS/iPP nanocomposites was analyzed by means of mechanical, microscopic (scanning electron microscopy-energy dispersive spectroscopy), thermal (differential scanning calorimetry, thermogravimetry), thermomechanical (Vicat softening point) analyses. The results were compared with the previous findings on CS/polyolefin composites. The role of CS compounds was discussed in terms of plastic processing additives.</jats:p>

Topics
  • nanocomposite
  • compound
  • polymer
  • scanning electron microscopy
  • thermogravimetry
  • differential scanning calorimetry
  • spectroscopy