People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferdous, Wahid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021Mechanical Properties of Macro Polypropylene Fibre-Reinforced Concrete
- 2021Investigation on the physical, mechanical and microstructural properties of epoxy polymer matrix with crumb rubber and short fibres for composite railway sleeperscitations
- 2021Design considerations for prefabricated composite jackets for structural repaircitations
- 2021Shear behaviour of hollow precast concrete-composite structurescitations
- 2021Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environmentscitations
- 2021Mechanical properties of macro polypropylene fibre-reinforced concretecitations
- 2021Static behaviour of glass fibre reinforced novel composite sleepers for mainline railway trackcitations
- 2021Novel bending test method for polymer railway sleeper materialscitations
- 2021Failure analysis and the effect of material properties on the screw pull-out behaviour of polymer composite sleeper materialscitations
- 2020Behavior of circular concrete columns reinforced with hollow composite sections and GFRP barscitations
- 2020Optimal design for epoxy polymer concrete based on mechanical properties and durability aspectscitations
- 2020Characteristics, strength development and microstructure of cement mortar containing oil-contaminated sandcitations
- 2020A New Design-Oriented Model of Glass Fiber-Reinforced Polymer-Reinforced Hollow Concrete Columnscitations
Places of action
Organizations | Location | People |
---|
article
Novel bending test method for polymer railway sleeper materials
Abstract
<p>Alternative sleeper technologies have been developed to address the significant need for the replacement of deteriorating timber railway sleepers. The review of the literature indicates that the railway sleepers might fail while in service, despite passing the evaluation tests of the current composite sleeper standards which indicated that these tests do not represent in situ sleeper on ballast. In this research, a new five‐point bending test is developed to evaluate the flexural behaviour of timber replacement sleeper technologies supported by ballast. Due to the simplicity, ac-ceptance level of evaluation accuracy and the lack of in‐service behaviour of alternative sleepers, this new testing method is justified with the bending behaviour according to the Beam on Elastic Foundation theory. Three timber replacement sleeper technologies—plastic, synthetic composites and low‐profile prestressed concrete sleepers in addition to timber sleepers—were tested under service loading condition to evaluate the suitability of the new test method. To address the differences in the bending of the sleepers due to their different modulus of elasticities, the most appropriate material for the middle support was also determined. Analytical equations of the bending moments with and without middle support settlement were also developed. The results showed that the five-point static bending test could induce the positive and negative bending moments experienced by railway sleepers under a train wheel load. It was also found that with the proposed testing spans, steel‐EPDM rubber is the most suitable configuration for low bending modulus sleepers such as plastic, steel‐neoprene for medium modulus polymer sleepers and steel‐steel for very high modulus sleepers such as concrete. Finally, the proposed bending moment equations can precisely predict the flexural behaviour of alternative sleepers under the five‐point bending test.</p>