People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wolf, Mario
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Electrospun Ca<sub>3</sub>Co<sub>4−</sub><i><sub>x</sub></i>O<sub>9+</sub><i><sub>δ</sub></i> nanofibers and nanoribbons: Microstructure and thermoelectric propertiescitations
- 2023Near-Field Synthetic Aperture Focusing Technique to Enhance the Inspection Capability of Multi-Layer HBM Stacks in Scanning Acoustic Microscopycitations
- 2022Cu-Ni-Based Alloys from Nanopowders as Potent Thermoelectric Materials for High-Power Output Applicationscitations
- 2022Electrospun Ca3Co4−xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties
- 2022Experimental application of a laser-based manufacturing process to develop a free customizable, scalable thermoelectric generator demonstrated on a hot shaft
- 2021Role of Doping Agent Degree of Sulfonation and Casting Solvent on the Electrical Conductivity and Morphology of {PEDOT}:{SPAES} Thin Filmscitations
- 2021Role of doping agent degree of sulfonation and casting solvent on the electrical conductivity and morphology of pedot:Spaes thin films
- 2021Evaluation of Cu-Ni-Based Alloys for Thermoelectric Energy Conversioncitations
- 2021Role of Doping Agent Degree of Sulfonation and Casting Solvent on the Electrical Conductivity and Morphology of PEDOT:SPAES Thin Filmscitations
Places of action
Organizations | Location | People |
---|
article
Role of Doping Agent Degree of Sulfonation and Casting Solvent on the Electrical Conductivity and Morphology of PEDOT:SPAES Thin Films
Abstract
<jats:p>Poly(3,4-ethylenedioxythiophene) (PEDOT) plays a key role in the field of electrically conducting materials, despite its poor solubility and processability. Various molecules and polymers carrying sulfonic groups can be used to enhance PEDOT’s electrical conductivity. Among all, sulfonated polyarylether sulfone (SPAES), prepared via homogenous synthesis with controlled degree of sulfonation (DS), is a very promising PEDOT doping agent. In this work, PEDOT was synthesized via high-concentration solvent-based emulsion polymerization using 1% w/w of SPAES with different DS as dopant. It was found that the PEDOT:SPAESs obtained have improved solubility in the chosen reaction solvents, i.e., N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone and, for the first time, the role of doping agent, DS and polymerization solvents were investigated analyzing the electrical properties of SPAESs and PEDOT:SPAES samples and studying the different morphology of PEDOT-based thin films. High DS of SPAES, i.e., 2.4 meq R-SO3−× g−1 of polymer, proved crucial in enhancing PEDOT’s electrical conductivity. Furthermore, the DMSO capability to favor PEDOT and SPAES chains rearrangement and interaction results in the formation of a polymer film with more homogenous morphology and higher conductivity than the ones prepared from DMAc, DMF, and NMP.</jats:p>