People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nocke, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2023Weft-knitted active joints for smart composite applications
- 2023Development of fiber-based piezoelectric sensors for the load monitoring of dynamically stressed fiber-reinforced compositescitations
- 2023Characterization of the Viscoelastic Properties of Yarn Materials:citations
- 2023Advancing Smart Textiles: Structural Evolution of Knitted Piezoresistive Strain Sensors for Enabling Precise Motion Capturecitations
- 2022Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Controlcitations
- 2022Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textilescitations
- 2022Melt Spinning of Elastic and Electrically Conductive Filament Yarns and their Usage as Strain Sensorscitations
- 2021High-speed, helical and self-coiled dielectric polymer actuatorcitations
- 2021Development of an Elastic, Electrically Conductive Coating for TPU Filamentscitations
- 2021Non-monotonic sensor behavior of carbon particle-filled textile strain sensorscitations
- 2021Fundamentals and working mechanisms of artificial muscles with textile application in the loopcitations
- 2021Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarnscitations
- 2020Entwicklung eines neuartigen Prüfverfahrens zur Untersuchung der Zugfestigkeit von Fasersträngen für textile Bewehrungsstrukturen
- 2020In-situ load-monitoring of CFRP components using integrated carbon rovings as strain sensors
- 2019Influence of thickness ratio and integrated weft yarn column numbers in shape memory alloys on the deformation behavior of adaptive fiber-reinforced plasticscitations
- 2019Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloyscitations
- 2019Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technologycitations
- 2019Integrated textile-based strain sensors for load monitoring of dynamically stressed CFP components
- 2019Adaptive hinged fiber reinforced plastics with tailored shape memory alloy hybrid yarncitations
- 2019On the development of a function-integrative sleeve for medical applications
- 2019Integrierbare textilbasierte Dehnungssensoren für das Load-Monitoring dynamisch beanspruchter CFK-Bauteile
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer composites.citations
- 2018Multifunctional components from carbon concrete composites C³ - integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopescitations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer compositescitations
- 2018Multifunctional components from carbon concrete composite C³ – integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopescitations
- 2017Multi-layered sensor yarns for in situ monitoring of textile reinforced compositescitations
- 2016Automated detection of yarn orientation in 3D-draped carbon fiber fabrics and preforms from eddy current datacitations
- 2016Measurement methods of dynamic yarn tension in a ring spinning processcitations
- 2016Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine bladescitations
- 2015Methods for adhesion/friction reduction of novel wire-shaped actuators, based on shape memory alloys, for use in adaptive fiber-reinforced plastic compositescitations
- 2015Integrative manufacturing of textile-based sensors for spatiallyl-resolved structural health monitoring tasks of large-scaled composite components.citations
- 2014Defect detection in carbon fiber non-crimp fabrics and CRFP with high-frequency eddy current technique ; Fehlererkennung an glatten Kohlenstofffasergeweben und CFRP mittels Hochfrequenzwirbelstrom-Technik
- 2013High temperature resistant insulated hybrid yarns for carbon fiber reinforced thermoplastic compositescitations
- 2013Development and characterization of textile-processable actuators based on shape-memory alloys for adaptive fiber-reinforced plasticscitations
Places of action
Organizations | Location | People |
---|
article
Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns
Abstract
Art. 590, 12 S. ; Electrically conductive fibers are required for various applications in modern textile technology, e.g., the manufacturing of smart textiles and fiber composite systems with textile-based sensor and actuator systems. According to the state of the art, fine copper wires, carbon rovings, or metallized filament yarns, which offer very good electrical conductivity but low mechanical elongation capabilities, are primarily used for this purpose. However, for applications requiring highly flexible textile structures, as, for example, in the case of wearable smart textiles and fiber elastomer composites, the development of electrically conductive, elastic yarns is of great importance. Therefore, highly stretchable thermoplastic polyurethane (TPU) was compounded with electrically conductive carbon nanotubes (CNTs) and subsequently melt spun. The melt spinning technology had to be modified for the processing of highly viscous TPU-CNT compounds with fill levels of up to 6 wt.% CNT. The optimal configuration was achieved at a CNT content of 5 wt.%, providing an electrical resistance of 110 Ocm and an elongation at break of 400%. ; 13 ; Nr.4