People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rizal, Muhammad Asyraf Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Experimental investigation and analytical verification of buckling of functionally graded carbon nanotube-reinforced sandwich beams
- 2023Experimental and Analytical Investigation of Flexural Behavior of Carbon Nanotube Reinforced Textile Based Compositescitations
- 2023The Characteristics of Polymer Concrete Reinforced with Polypropylene Fibres Under Axial and Lateral Compression Loadscitations
- 2022Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applicationscitations
- 2022Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applicationscitations
- 2021Micro- and Nanocellulose in Polymer Composite Materials: A Review.citations
- 2020Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Reviewcitations
- 2019Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier propertiescitations
- 2019Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: A reviewcitations
Places of action
Organizations | Location | People |
---|
article
Micro- and Nanocellulose in Polymer Composite Materials: A Review.
Abstract
The high demand for plastic and polymeric materials which keeps rising every year makes them important industries, for which sustainability is a crucial aspect to be taken into account. Therefore, it becomes a requirement to makes it a clean and eco-friendly industry. Cellulose creates an excellent opportunity to minimize the effect of non-degradable materials by using it as a filler for either a synthesis matrix or a natural starch matrix. It is the primary substance in the walls of plant cells, helping plants to remain stiff and upright, and can be found in plant sources, agriculture waste, animals, and bacterial pellicle. In this review, we discussed the recent research development and studies in the field of biocomposites that focused on the techniques of extracting micro- and nanocellulose, treatment and modification of cellulose, classification, and applications of cellulose. In addition, this review paper looked inward on how the reinforcement of micro- and nanocellulose can yield a material with improved performance. This article featured the performances, limitations, and possible areas of improvement to fit into the broader range of engineering applications.