People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mangialetto, Jessica
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Construction of furan-maleimide Diels-Alder reversible network cure diagrams: modelling and experimental validation
- 2024Effects of Cure on the Ionic Conductivity and Relaxation Strength of a Reversible Polymer Network Studied by Dielectric Spectroscopy.citations
- 2024Modelling of diffusion-controlled Diels-Alder reversible network formation and its application to cure diagrams
- 2023Diffusion- and mobility-controlled self-healing polymer networks with dynamic covalent bonding
- 2023Separating Kinetics from Relaxation Dynamics in Reactive Soft Matter by Dielectric Spectroscopycitations
- 2023Real-Time Determination of the Glass Transition Temperature during Reversible Network Formation Based on Furan–Maleimide Diels–Alder Cycloadditions Using Dielectric Spectroscopycitations
- 2022UV Stability of Self-Healing Poly(methacrylate) Network Layerscitations
- 2020Self-Healing in Mobility-Restricted Conditions Maintaining Mechanical Robustness: Furan–Maleimide Diels–Alder Cycloadditions in Polymer Networks for Ambient Applicationscitations
- 2019Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bondingcitations
- 2018The Effect of Vitrification on the Diels-Alder Reaction Kinetics
Places of action
Organizations | Location | People |
---|
article
Self-Healing in Mobility-Restricted Conditions Maintaining Mechanical Robustness: Furan–Maleimide Diels–Alder Cycloadditions in Polymer Networks for Ambient Applications
Abstract
Two reversible polymer networks, based on Diels–Alder cycloadditions, are selected to discuss the opportunities of mobility-controlled self-healing in ambient conditions for which information is lacking in literature. The main methods for this study are (modulated temperature) differential scanningalorimetry, microcalorimetry, dynamic rheometry, dynamic mechanical analysis, and kinetic simulations. The reversible network 3M-3F630 is chosen to study the conceptual aspects of diffusion-controlled Diels–Alder reactions from 20 to 65 °C. Network formation by gelation is proven and above 30 °C gelled glasses are formed, while cure below 30 °C gives ungelled glasses. The slow progress of Diels–Alder reactions in mobility-restricted conditions is proven by the further increase of the system’s glass transition temperature by 24 °C beyond the cure temperature of 20 °C. These findings are employed in the reversible network 3M-F375PMA, which is UV-polymerized, starting from a Diels–Alder methacrylate pre-polymer. Self-healing of microcracks in diffusion-controlled conditions is demonstrated at 20 °C. De-gelation measurements show the structural integrity of both networks up to at least 150 °C. Moreover, mechanical robustness in 3M-F375PMA is maintained by the poly(methacrylate) chains to at least 120 °C. The self-healing capacity is simulated in an ambient temperature window between −40 and 85 °C, supporting its applicability as self-healing encapsulant in photovoltaics.