People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sanivada, Usha Kiran Kumar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Effect of graphite particulate on mechanical characterization of hybrid polymer compositescitations
- 2022Joule-heating effect of thin films with carbon-based nanomaterialscitations
- 2021Improvement of biocomposite performance under low-velocity impact test - a reviewcitations
- 2020PLA composites reinforced with flax and jute fibers—A review of recent trends, processing parameters and mechanical propertiescitations
Places of action
Organizations | Location | People |
---|
article
PLA composites reinforced with flax and jute fibers—A review of recent trends, processing parameters and mechanical properties
Abstract
Multiple environmental concerns such as garbage generation, accumulation in disposal systems and recyclability are powerful drivers for the use of many biodegradable materials. Due to the new uses and requests of plastic users, the consumption of biopolymers is increasing day by day. Polylactic Acid (PLA) being one of the most promising biopolymers and researched extensively, it is emerging as a substitute for petroleum-based polymers. Similarly, owing to both environmental and economic benefits, as well as to their technical features, natural fibers are arising as likely replacements to synthetic fibers to reinforce composites for numerous products. This work reviews the current state of the art of PLA compounds reinforced with two of the high strength natural fibers for this application: flax and jute. Flax fibers are the most valuable bast-type fibers and jute is a widely available plant at an economic price across the entire Asian continent. The physical and chemical treatments of the fibers and the production processing of the green composites are exposed before reporting the main achievements of these materials for structural applications. Detailed information is summarized to understand the advances throughout the last decade and to settle the basis of the next generation of flax/jute reinforced PLA composites (200 Maximum). ; Thanks to the team members of Fibrenamics and Department of Mechanical Engineering, University of Minho, Azurém Campus, Portugal. FCT—Fundação para a Ciência e Tecnologia within the R&D Unit MEtRICs Project Scope UIDB/00319/2020 and R&D Unit 2C2T.