Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bizhani, Hasti

  • Google
  • 4
  • 6
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Applications of hybrid nanosystems in electromagnetic interference shieldingcitations
  • 2022Physical and mechanical properties of hybridized elastomeric foam based on ethylene-propylene-diene-monomer, multiwall carbon nanotube, and barium titanate2citations
  • 2020Preparation and Characterization of Highly Elastic Foams with Enhanced Electromagnetic Wave Absorption Based On Ethylene-Propylene-Diene-Monomer Rubber Filled with Barium Titanate/Multiwall Carbon Nanotube Hybrid17citations
  • 2020Highly Deformable Porous Electromagnetic Wave Absorber Based on Ethylene–Propylene–Diene Monomer/Multiwall Carbon Nanotube Nanocomposites24citations

Places of action

Chart of shared publication
Verdejo, Raquel
3 / 15 shared
López-Manchado, Miguel A.
1 / 6 shared
Maroufkhani, Mahshid
1 / 2 shared
Katbab, Ali Asghar
2 / 4 shared
Lopez-Hernandez, Emil
1 / 2 shared
Miranda, Jose Miguel
1 / 1 shared
Chart of publication period
2024
2022
2020

Co-Authors (by relevance)

  • Verdejo, Raquel
  • López-Manchado, Miguel A.
  • Maroufkhani, Mahshid
  • Katbab, Ali Asghar
  • Lopez-Hernandez, Emil
  • Miranda, Jose Miguel
OrganizationsLocationPeople

article

Preparation and Characterization of Highly Elastic Foams with Enhanced Electromagnetic Wave Absorption Based On Ethylene-Propylene-Diene-Monomer Rubber Filled with Barium Titanate/Multiwall Carbon Nanotube Hybrid

  • Bizhani, Hasti
Abstract

<jats:p>Hybrid ethylene-propylene-diene-monomer (EPDM) nanocomposite foams were produced via compression molding with enhanced electromagnetic wave absorption efficiency. The hybrid filler, consisting of 20 phr ferroelectric barium titanate (BT) and various loading fractions of multi-wall carbon nanotubes (MWCNTs), synergistically increased the electromagnetic (EM) wave absorption characteristics of the EPDM foam. Accordingly, while the EPDM foam filled with 20 phr BT was transparent to the EM wave within the frequency range of 8.2–12.4 GHz (X-band), the hybrid EPDM nanocomposite foam loaded with 20 phr BT and 10 phr MWCNTs presented a total shielding effectiveness (SE) of ~22.3 dB compared to ~16.0 dB of the MWCNTs (10 phr). This synergistic effect is suggested to be due to the segregation of MWCNT networks within the cellular structure of EPDM, resulting in enhanced electrical conductivity, and also high dielectric permittivity of the foam imparted by the BT particles. Moreover, the total SE of the BT/MWCNTs loaded foam samples remained almost unchanged when subjected to repeated bending due to the elastic recovery behavior of the crosslinked EPDM foamed nanocomposites.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • nanotube
  • rubber
  • electrical conductivity
  • Barium
  • compression molding