Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thomas, Ananya

  • Google
  • 3
  • 12
  • 150

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020A Kinetic Analysis of the Thermal Degradation Behaviours of Some Bio-Based Substrates15citations
  • 2019Passive Fire Protection of Wood Substrates using Starch-based Formulationscitations
  • 2018Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials135citations

Places of action

Chart of shared publication
Moinuddin, Khalid Abu Mohammad
1 / 2 shared
Joseph, Paul
3 / 16 shared
Tretsiakova-Mcnally, Svetlana
2 / 18 shared
Douarin, Adeline Le
1 / 1 shared
Ukleja, Sebastian
1 / 2 shared
Wang, Chun-Hui
1 / 2 shared
Dekiwadia, Chaitali
1 / 3 shared
Ma, Jun
1 / 11 shared
John, Sabu
1 / 5 shared
Bhat, Tanmay
1 / 1 shared
Kandare, Everson
1 / 5 shared
Jones, Mitchell
1 / 4 shared
Chart of publication period
2020
2019
2018

Co-Authors (by relevance)

  • Moinuddin, Khalid Abu Mohammad
  • Joseph, Paul
  • Tretsiakova-Mcnally, Svetlana
  • Douarin, Adeline Le
  • Ukleja, Sebastian
  • Wang, Chun-Hui
  • Dekiwadia, Chaitali
  • Ma, Jun
  • John, Sabu
  • Bhat, Tanmay
  • Kandare, Everson
  • Jones, Mitchell
OrganizationsLocationPeople

article

A Kinetic Analysis of the Thermal Degradation Behaviours of Some Bio-Based Substrates

  • Moinuddin, Khalid Abu Mohammad
  • Joseph, Paul
  • Tretsiakova-Mcnally, Svetlana
  • Thomas, Ananya
Abstract

In the present paper, we report on a detailed study regarding the thermal degradation behaviours of some bio-sourced substrates. These were previously identified as the base materials in the formulations for fireproofing wood plaques through our investigations. The substrates included: β-cyclodextrin, dextran, potato starch, agar-agar, tamarind kernel powder and chitosan. For deducing the Arrhenius parameters from thermograms obtained through routine thermogravimetric analyses (TGA), we used the standard Flynn–Wall–Ozawa (FWO) method and employed an in-house developed proprietary software. In the former case, five different heating rates were used, whereas in the latter case, the data from one dynamic heating regime were utilized. Given that the FWO method is essentially based on a model-free approach that also makes use of multiple heating rates, it can be considered in the present context as superior to the one that is dependent on a single heating rate. It is also relevant to note here that the values of energy of activation (Ea) obtained in each case should only be considered as apparent values at best. Furthermore, some useful, but limited, correlations were identified between the Ea values and the relevant parameters obtained earlier by us from pyrolysis combustion flow calorimetry (PCFC).

Topics
  • pyrolysis
  • impedance spectroscopy
  • combustion
  • thermogravimetry
  • activation
  • wood
  • elemental analysis
  • calorimetry