People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Szeluga, Urszula
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Polymer Composites with Carbon Fillers Based on Coal Pitch and Petroleum Pitch Cokes: Structure, Electrical, Thermal, and Mechanical Propertiescitations
- 2024Engineering of Polystyrene/BiFeO<sub>3</sub> 0–3 Thin Film Nanocomposites for Mechanical Energy Harvesting
- 2024Polymer Nanocomposites Based on Nanosized Substituted Ferrites (NiZn)1−xMnxFe2O4 on the Surface of Carbon Nanotubes for Effective Interaction with High-Frequency EM Radiationcitations
- 2023Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shellscitations
- 2023Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
- 2023Development of Polyhydroxybutyrate-Based Packaging Films and Methods to Their Ultrasonic Weldingcitations
- 2021Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carboncitations
- 2020Phase Behavior of Amorphous/Semicrystalline Conjugated Polymer Blendscitations
- 2019Phase Diagrams of n-Type Low Bandgap Naphthalenediimide-Bithiophene Copolymer Solutions and Blendscitations
- 2018Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction studycitations
Places of action
Organizations | Location | People |
---|
article
Phase Behavior of Amorphous/Semicrystalline Conjugated Polymer Blends
Abstract
<jats:p>We report the phase behavior of amorphous/semicrystalline conjugated polymer blends composed of low bandgap poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene) -alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) and poly{(N,N′-bis(2-octyldodecyl)naphthalene -1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)). As usual in polymer blends, these two polymers are immiscible because ΔSm ≈ 0 and ΔHm > 0, leading to ΔGm > 0, in which ΔSm, ΔHm, and ΔGm are the entropy, enthalpy, and Gibbs free energy of mixing, respectively. Specifically, the Flory–Huggins interaction parameter (χ) for the PCPDTBT /P(NDI2OD-T2) blend was estimated to be 1.26 at 298.15 K, indicating that the blend was immiscible. When thermally analyzed, the melting and crystallization point depression was observed with increasing PCPDTBT amounts in the blends. In the same vein, the X-ray diffraction (XRD) patterns showed that the π-π interactions in P(NDI2OD-T2) lamellae were diminished if PCPDTBT was incorporated into the blends. Finally, the correlation of the solid-liquid phase transition and structural information for the blend system may provide insight for understanding other amorphous/semicrystalline conjugated polymers used as active layers in all-polymer solar cells, although the specific morphology of a film is largely affected by nonequilibrium kinetics.</jats:p>