Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Samoć, Marek

  • Google
  • 1
  • 2
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry10citations

Places of action

Chart of shared publication
Zaręba, Jan
1 / 7 shared
Nyk, Marcin
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zaręba, Jan
  • Nyk, Marcin
OrganizationsLocationPeople

article

Nonlinear Optical Pigments. Two-Photon Absorption in Crosslinked Conjugated Polymers and Prospects for Remote Nonlinear Optical Thermometry

  • Zaręba, Jan
  • Nyk, Marcin
  • Samoć, Marek
Abstract

Nonlinear optical (NLO) pigments are compounds insoluble in solvents that exhibit phenomena related to nonlinear optical susceptibilities (χ (n) where n = 2,3,.), e.g., two-photon absorption (2PA) which is related to the imaginary part of χ (3) . Determination of spectrally-resolved 2PA properties for NLO pigments of macromolecular nature, such as coordination polymers or crosslinked polymers, has long been a challenging issue due to their particulate form, precluding characterizations with standard techniques such as Z-scan. In this contribution, we investigate thus far unknown spectrally-resolved 2PA properties of a new subclass of NLO pigments—crosslinked conjugated polymers. The studied compounds are built up from electron-donating (triphenylamine) and electron-withdrawing (2,2’-bipyridine) structural fragments joined by vinylene ( Pol1 ) or vinyl(4-ethynylphenyl) ( Pol2 ) aromatic bridges. 2PA properties of these polymers have been characterized in broad spectral range by specially modified two-photon excited fluorescence (TPEF) techniques: solid state TPEF (SSTPEF) and internal standard TPEF (ISTPEF). The impact of self-aggregation of aromatic backbones on the 2PA properties of the polymers has been evaluated through extended comparisons of NLO parameters, i.e., 2PA cross sections (σ 2 ) and molar-mass normalized 2PA merit factors (σ 2 /M) with those of small-molecular model compounds: Mod1 and Mod2 . By doing this, we found that the 2PA response of Pol1 and Pol2 is improved 2–3 times versus respective model compounds in the solid state form. Further comparisons with 2PA results collected for diluted solutions of Mod1 and Mod2 supports the notion that self-aggregated structure contributes to the observed enhancement of 2PA response. On the other hand, it is clear that Pol1 and Pol2 suffer from aggregation-caused quenching phenomenon, well reflected in time-resolved fluorescence properties as well as in relatively low values of quantum yield of fluorescence. Accordingly, despite improved intrinsic 2PA response, the effective intensity of two-photon excited emission for Pol1 and Pol2 is slightly lower relative to Mod1 and Mod2 . Finally, we explore temperature-resolved luminescence properties under one- (377 nm), two- (820 nm), and three-photon excitation (1020 nm) conditions of postsynthetically Eu 3+ -functionalized material, Pol1-Eu , and discuss its suitability for temperature sensing applications.

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • quenching
  • luminescence