People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marien, Yoshi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Combining ternary phase diagrams and multiphase coupled matrix-based Monte Carlo to model phase dependent compositional and molar mass variations in high impact polystyrene synthesiscitations
- 2023Multi-angle evaluation of kinetic Monte-Carlo simulations as a tool to evaluate the distributed monomer composition in gradient copolymer synthesiscitations
- 2023Playing with process conditions to increase the industrial sustainability of poly(lactic acid)-based materialscitations
- 2023Molecular scale-driven upgrading of extrusion technology for sustainable polymer processing and recyclingcitations
- 2022Identifying optimal synthesis protocols via the in silico characterization of (a)symmetric block and gradient copolymers with linear and branched chains
- 2022Thermal and thermal-oxidative molecular degradation of polystyrene and acrylonitrile butadiene styrene during 3D printing starting from filaments and pelletscitations
- 2022A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)scitations
- 2020Connecting polymer synthesis and chemical recycling on a chain-by-chain basis : a unified matrix-based kinetic Monte Carlo strategycitations
- 2020Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate)citations
Places of action
Organizations | Location | People |
---|
article
Progress in reaction mechanisms and reactor technologies for thermochemical recycling of poly(methyl methacrylate)
Abstract
Chemical or feedstock recycling of poly(methyl methacrylate) (PMMA) by thermal degradation is an important societal challenge to enable polymer circularity. The annual PMMA world production capacity is over 2.4 x 10(6)tons, but currently only 3.0 x 10(4)tons are collected and recycled in Europe each year. Despite the rather simple chemical structure of MMA, a debate still exists on the possible PMMA degradation mechanisms and only basic batch and continuous reactor technologies have been developed, without significant knowledge of the decomposition chemistry or the multiphase nature of the reaction mixture. It is demonstrated in this review that it is essential to link PMMA thermochemical recycling with the PMMA synthesis as certain structural defects from the synthesis step are affecting the nature and relevance of the subsequent degradation reaction mechanisms. Here, random fission plays a key role, specifically for PMMA made by anionic polymerization. It is further highlighted that kinetic modeling tools are useful to further unravel the dominant PMMA degradation mechanisms. A novel distinction is made between global conversion or average chain length models, on the one hand, and elementary reaction step-based models on the other hand. It is put forward that only by the dedicated development of the latter models, the temporal evolution of degradation product spectra under specific chemical recycling conditions will become possible, making reactor design no longer an art but a science.