People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Teixeira De Freitas, Sofia
Instituto Superior Técnico
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Experimental evaluation of interface adhesion of a flax fiber composite patch with epoxy and polyurethane adhesives for the reinforcement of steel structurescitations
- 2024On the Mode I Fracture Toughness of Metal-Composite Joints with untreated SLM 3D-Printed Ti6Al4V Substrates
- 2024Disrupting Fracture Toughness Of Adhesively Bonded Joints By Tailoring Composite Substrates
- 2024Acoustic emission approach for identifying fracture mechanisms in composite bonded Jointscitations
- 2023Uncovering the toughening mechanisms of bonded joints through tailored CFRP layupcitations
- 2023How does “listening” help fracture understanding?
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Synthesis and characterization of novel eco-epoxy adhesives based on the modified tannic acid for self-healing jointscitations
- 2022Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2022Promoting extrinsic bridging of adhesively-bonded CFRP joints through the adhesive layer architecture
- 2022Testing mechanical performance of adhesively bonded composite joints in engineering applications: an overviewcitations
- 2022Enhancement of mode I fracture toughness of adhesively bonded secondary joints using different layup patterning of CFRP
- 2021Effect of salt spray ageing on the fracture of composite-to-metal bonded jointscitations
- 2021Testing mechanical performance of adhesively bonded composite joints in engineering applicationscitations
- 2021The effect of modified tannic acid (TA) eco-epoxy adhesives on mode I fracture toughness of bonded jointscitations
- 2021On the influence of glass fiber mat on the mixed-mode fracture of composite-to-metal bonded jointscitations
- 2021On the influence of glass fiber mat on the mixed-mode fracture of composite-to-metal bonded jointscitations
- 2021Self-healing capability of novel eco-epoxy adhesives based on the modified tannic acid on Al adherends tested in a single lap jointcitations
- 2021Damage assessment of a titanium skin adhesively bonded to carbon fiber–reinforced plastic omega stringers using acoustic emissioncitations
- 2021Evaluation of the strain-based partitioning method for mixed-mode I+II fracture of bi-material crackscitations
- 2020Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherendscitations
- 2020Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherendscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020Damage assessment of NCF, 2D and 3D Woven Composites under Compression After Multiple-Impact using Acoustic Emissioncitations
- 2020Review on adhesives and surface treatments for structural applications : recent developments on sustainability and implementation for metal and composite substratescitations
- 2019Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Compositescitations
- 2019From thin to extra-thick adhesive layer thicknesses:Fracture of bonded joints under mode I loading conditionscitations
- 2019Strain-based methodology for mixed-mode I plus II fracture: A new partitioning method for bi-material adhesively bonded jointscitations
- 2019Strain-based methodology for mixed-mode I+II fracture: A new partitioning method for bi-material adhesively bonded jointscitations
- 2019Damage characterization of adhesively-bonded Bi-material joints using acoustic emissioncitations
- 2018Interlaminar adhesion assessment of carbon-epoxy laminates under salt water ageing using peel testscitations
- 2018Interlaminar adhesion assessment of carbon-epoxy laminates under salt water ageing using peel testscitations
- 2018On the fracture behaviour of CFRP bonded joints under mode I loading: Effect of supporting carrier and interface contaminationcitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Interface Adhesion by Novel Eco-Epoxy Adhesives Based on the Modified Tannic Acid on Al and CFRP Adherends
Abstract
<p>This paper presents a new process for obtaining eco-epoxide adhesives synthesized from bio-renewable raw material (tannic acid-TA) and used for bonding lightweight materials (aluminum (Al) and carbon fiber reinforced polymer (CFRP). Two synthesized bio-epoxy components based on TA, (A) glycidyl ether and (B) glycidyl phosphate ester of TA, were used as a replacement for the toxic epoxy component based on Bisphenol A. The effect of eco-epoxy components on the interface adhesion was measured by the determination of adhesion parameter b, which was compared to the reference epoxy (REF). The increase of adhesion parameter b was 77.5% for A and 151.5% for B. The adhesion of both eco-adhesives was tested using the bell peel test (BPT) with the Al and CFRP adherends. When compared to REF, the average peel load for B was 17.6% (39.3%) and 58.3% (176.9%) higher for the Al and CFRP adherends, respectively. Complete adhesion failure of REF reflected the weak adhesion to both Al and CFRP, which was improved by the addition of eco-epoxy components A and B showing the presence of cohesive failure. The microhardness testing method of interface adhesion was proven to be a fast and reliable testing method, providing a qualitative indication in adhesive selection.</p>