Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sperling, Clemens

  • Google
  • 1
  • 4
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Epoxy-anhydride vitrimers from aminoglycidyl resins with high glass transition temperature and efficient stress relaxation44citations

Places of action

Chart of shared publication
Kaiser, Simon
1 / 3 shared
Giebler, Michael
1 / 1 shared
Schlögl, Sandra
1 / 33 shared
Duretek, Ivica
1 / 17 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Kaiser, Simon
  • Giebler, Michael
  • Schlögl, Sandra
  • Duretek, Ivica
OrganizationsLocationPeople

article

Epoxy-anhydride vitrimers from aminoglycidyl resins with high glass transition temperature and efficient stress relaxation

  • Sperling, Clemens
  • Kaiser, Simon
  • Giebler, Michael
  • Schlögl, Sandra
  • Duretek, Ivica
Abstract

<p>Epoxy-anhydride vitrimers are covalent adaptable networks, which undergo associative bond exchange reactions at elevated temperature. Their service temperature is influenced by the glass transition temperature (Tg) as well as the topology freezing transition temperature (Tv), at which the covalent bond exchange reactions become significantly fast. The present work highlights the design of high-Tg epoxy-anhydride vitrimers that comprise an efficient stress relaxation at elevated temperature. Networks are prepared by thermally curing aminoglycidyl monomers with glutaric anhydride in different stoichiometric ratios. The tertiary amine groups present in the structure of the aminoglycidyl derivatives not only accelerate the curing reaction but also catalyse the transesterification reaction above Tv, as shown in stress relaxation measurements. The topology rearrangements render the networks recyclable, which is demonstrated by reprocessing a grinded powder of the cured materials in a hot press. The epoxy-anhydride vitrimers are characterised by a high Tg (up to 140 °C) and an adequate storage modulus at 25 °C (~2.5 GPa), which makes them interesting candidates for structural applications operating at high service temperature.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • resin
  • amine
  • curing