Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tasnádi, Ildikó

  • Google
  • 1
  • 7
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Temperature and Time Dependence of the Solvent-Induced Crystallization of Poly(l-lactide)17citations

Places of action

Chart of shared publication
Nemeth, Zoltan
1 / 4 shared
Leskó, Máté Zs.
1 / 3 shared
Szabó, Tamás
1 / 1 shared
Kollár, Mariann
1 / 1 shared
Udayakumar, Mahitha
1 / 3 shared
Kristály, Ferenc
1 / 3 shared
Marossy, Kálmán
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Nemeth, Zoltan
  • Leskó, Máté Zs.
  • Szabó, Tamás
  • Kollár, Mariann
  • Udayakumar, Mahitha
  • Kristály, Ferenc
  • Marossy, Kálmán
OrganizationsLocationPeople

article

Temperature and Time Dependence of the Solvent-Induced Crystallization of Poly(l-lactide)

  • Nemeth, Zoltan
  • Leskó, Máté Zs.
  • Szabó, Tamás
  • Kollár, Mariann
  • Udayakumar, Mahitha
  • Tasnádi, Ildikó
  • Kristály, Ferenc
  • Marossy, Kálmán
Abstract

<jats:p>The role of organic solvents in governing the crystallization and morphology of semi-crystalline poly-l-lactide (PLLA) sheets was systematically investigated. Three different organic solvents; ethyl acetate (EA), o-dichlorobenzene (ODCB), and nitrobenzene (NB), with a solubility parameter analogous to PLLA and with a high capability of swelling, were chosen. It has been witnessed that the degree of crystallization and crystal morphology depends highly on the degree of swelling and evaporation rate of the solvent. Besides, the temperature and time of treatment played a significant role in the crystallization of polymers. The effect of different solvents and curing times are reflected by the measured X-ray diffraction (XRD) peaks and the differences are best shown by the unit cell size. The largest variation is observed along the c-axis, indicating shorter bonds, thus, showing better conformation after NB and ODCB treatment. The percentage of crystallinity calculated using the classical relative crystallinity index of XRD shows closer values to those calculated with differential scanning calorimetry (DSC) data, but a huge variation is observed while using the LeBail deconvolution method. The strong birefringence of polarised optical micrograph (POM) and the crystal morphology of scanning electron micrograph (SEM) also evidenced the orientation of polymer crystallites and increased crystallinity after solvent-supported heat treatment.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • scanning electron microscopy
  • x-ray diffraction
  • differential scanning calorimetry
  • crystallization
  • crystallinity
  • evaporation
  • curing
  • elemental analysis