Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hliavitskaya, Tatiana A.

  • Google
  • 1
  • 8
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020One-Step Preparation of Antifouling Polysulfone Ultrafiltration Membranes via Modification by a Cationic Polyelectrolyte Based on Polyacrylamide25citations

Places of action

Chart of shared publication
Ulbricht, Mathias
1 / 9 shared
Penkova, Anastasia
1 / 3 shared
Kuzminova, Anna I.
1 / 1 shared
Ermakov, Sergey S.
1 / 1 shared
Burts, Katsiaryna S.
1 / 1 shared
Bildyukevich, Alexandr V.
1 / 2 shared
Plisko, T. V.
1 / 1 shared
Dmitrenko, Maria E.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ulbricht, Mathias
  • Penkova, Anastasia
  • Kuzminova, Anna I.
  • Ermakov, Sergey S.
  • Burts, Katsiaryna S.
  • Bildyukevich, Alexandr V.
  • Plisko, T. V.
  • Dmitrenko, Maria E.
OrganizationsLocationPeople

article

One-Step Preparation of Antifouling Polysulfone Ultrafiltration Membranes via Modification by a Cationic Polyelectrolyte Based on Polyacrylamide

  • Ulbricht, Mathias
  • Penkova, Anastasia
  • Kuzminova, Anna I.
  • Ermakov, Sergey S.
  • Burts, Katsiaryna S.
  • Bildyukevich, Alexandr V.
  • Hliavitskaya, Tatiana A.
  • Plisko, T. V.
  • Dmitrenko, Maria E.
Abstract

<jats:p>A novel method for one-step preparation of antifouling ultrafiltration membranes via a non-solvent induced phase separation (NIPS) technique is proposed. It involves using aqueous 0.05–0.3 wt.% solutions of cationic polyelectrolyte based on a copolymer of acrylamide and 2-acryloxyethyltrimethylammonium chloride (Praestol 859) as a coagulant in NIPS. A systematic study of the effect of the cationic polyelectrolyte addition to the coagulant on the structure, performance and antifouling stability of polysulfone membranes was carried out. The methods for membrane characterization involved scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), contact angle and zeta-potential measurements and evaluation of the permeability, rejection and antifouling performance in human serum albumin solution and surface water ultrafiltration. It was revealed that in the presence of cationic polyelectrolyte in the coagulation bath, its concentration has a major influence on the rate of “solvent–non-solvent” exchange and thus also on the rate of phase separation which significantly affects membrane structure. The immobilization of cationic polyelectrolyte macromolecules into the selective layer was confirmed by FTIR spectroscopy. It was revealed that polyelectrolyte macromolecules predominately immobilize on the surface of the selective layer and not on the bottom layer. Membrane modification was found to improve the hydrophilicity of the selective layer, to increase surface roughness and to change zeta-potential which yields the substantial improvement of membrane antifouling stability toward natural organic matter and human serum albumin.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • scanning electron microscopy
  • atomic force microscopy
  • permeability
  • copolymer
  • Fourier transform infrared spectroscopy