Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bone, Matthew

  • Google
  • 1
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons5citations

Places of action

Chart of shared publication
Macquart, Terence
1 / 21 shared
Howlin, Brendan J.
1 / 24 shared
Hamerton, Ian
1 / 113 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Macquart, Terence
  • Howlin, Brendan J.
  • Hamerton, Ian
OrganizationsLocationPeople

article

A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons

  • Macquart, Terence
  • Howlin, Brendan J.
  • Bone, Matthew
  • Hamerton, Ian
Abstract

Materials science is beginning to adopt computational simulation to eliminate laboratory trial and error campaigns—much like the pharmaceutical industry of 40 years ago. To further computational materials discovery, new methodology must be developed that enables rapid and accurate testing on accessible computational hardware. To this end, the authors utilise a novel methodology concept of intermediate molecules as a starting point, for which they propose the term ‘symthon’rather than conventional monomers. The use of symthons eliminates the initial monomer bonding phase, reducing the number of iterations required in the simulation, thereby reducing the runtime. A novel approach to molecular dynamics, with an NVT (Canonical) ensemble and variable unit cell geometry, was used to generate structures with differing physical and thermal properties. Additional script methods were designed and tested, which enabled a high degree of cure in all sampled structures. This simulation has been trialled on large-scale atomistic models of phenolic resins, based on a range of stoichiometric ratios of formaldehyde and phenol. Density and glass transition temperature values were produced, and found to be in good agreement with empirical data and other simulated values in the literature. The runtime of the simulation was a key consideration in script design; cured models can be produced in under 24 h on modest hardware. The use of symthons has been shown as a viable methodology to reduce simulation runtime whilst generating accurate models.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • phase
  • simulation
  • glass
  • glass
  • molecular dynamics
  • glass transition temperature
  • resin