Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laridon, Yannick

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Food-Grade PE Recycling: Effect of Nanoclays on the Decontamination Efficacy2citations

Places of action

Chart of shared publication
Gontard, Nathalie, N.
1 / 41 shared
Peyron, Stéphane
1 / 10 shared
Touchaleaume, François
1 / 8 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Gontard, Nathalie, N.
  • Peyron, Stéphane
  • Touchaleaume, François
OrganizationsLocationPeople

article

Food-Grade PE Recycling: Effect of Nanoclays on the Decontamination Efficacy

  • Gontard, Nathalie, N.
  • Peyron, Stéphane
  • Touchaleaume, François
  • Laridon, Yannick
Abstract

Although PE-based nanocomposites are gaining interest within the food packaging industry for their outstanding functional properties, their end-of-life has been poorly studied. The lack of identification of such materials suggests that they could end-up in the recycling pathway optimized for the decontamination of un-filled PE. The objective of the present work is to understand and quantify the mechanisms involved in the high temperature desorption of surrogates for PE nanocomposites filled with organo-modified montmorillonite (PNC), compared to conventional PE. An original experimental setup was coupled with a modelling approach to identify the two phenomena involved in the decontamination process: diffusion of the surrogate into the bulk and its evaporation at the surface. A sweep of experimental temperatures enabled the determination of diffusion and evaporation parameters for PE and PNC and the activation energies related to the diffusivity among those two materials. The effects of the introduction of clay nanofillers onto the decontamination process have been explained and recommendations for the recycling pathway have been put forward

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • activation
  • diffusivity
  • evaporation