People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jiang, Chulin
Teesside University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Impact characteristics of S2-glass fibre/FM94-epoxy composites under high and cryogenic temperatures: experimental and numerical investigationcitations
- 2024Impact characteristics of S2-glass fibre/FM94-epoxy composites under high and cryogenic temperaturescitations
- 2023Regenerated cellulose fabric reinforced bio-based polypropylene sandwich composites: fabrication, mechanical performance and analytical modellingcitations
- 2022Machining GLARE fibre metal laminates: a comparative study on drilling effect between conventional and ultrasonic-assisted drillingcitations
- 2022Effect of fibre orientation on impact damage resistance of S2/FM94 glass fibre composites for aerospace applications: an experimental evaluation and numerical validationcitations
- 2022Machining GLARE fibre metal laminatescitations
- 2022Investigation into the fatigue properties of flax fibre epoxy composites and hybrid composites based on flax and glass fibrescitations
- 2021Investigation into the fatigue properties of flax fibre vinyl-ester composites and hybrid composites based on flax and glass fibres
- 2021Effect of fibre orientation on impact damage resistance of S2/FM94 glass fibre composites for aerospace applications: an experimental evaluation and numerical validationcitations
- 2020Falling weight impact damage characterisation of flax and flax basalt vinyl ester hybrid compositescitations
Places of action
Organizations | Location | People |
---|
article
Falling weight impact damage characterisation of flax and flax basalt vinyl ester hybrid composites
Abstract
Understanding the damage mechanisms of composite materials requires detailed mapping of the failure behaviour using reliable techniques. This research focuses on an evaluation of the low-velocity falling weight impact damage behaviour of flax-basalt/vinyl ester (VE) hybrid composites. Incident impact energies under three different energy levels (50, 60, and 70 Joules) were employed to cause complete perforation in order to characterise different impact damage parameters, such as energy absorption characteristics, and damage modes and mechanisms. In addition, the water absorption behaviour of flax and flax basalt hybrid composites and its effects on the impact damage performance were also investigated. All the samples subjected to different incident energies were characterised using non-destructive techniques, such as scanning electron microscopy (SEM) and X-ray computed micro-tomography (πCT), to assess the damage mechanisms of studied flax/VE and flax/basalt/VE hybrid composites. The experimental results showed that the basalt hybrid system had a high impact energy and peak load compared to the flax/VE composite without hybridisation, indicating that a hybrid approach is a promising strategy for enhancing the toughness properties of natural fibre composites. The πCT and SEM images revealed that the failure modes observed for flax and flax basalt hybrid composites were a combination of matrix cracking, delamination, fibre breakage, and fibre pull out.