People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmidt, Annette
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Controlling the rotation modes of hematite nanospindles by dynamic magnetic fields
- 2021Strain- and field-induced anisotropy in hybrid elastomers with elongated filler nanoparticlescitations
- 2020Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerizationcitations
- 2017Soft, Wet-Chemical Synthesis of Metastable Superparamagnetic Hexagonal Close-Packed Nickel Nanoparticles in Different Ionic Liquidscitations
Places of action
Organizations | Location | People |
---|
article
Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization
Abstract
<jats:p>The incorporation of nanoparticles into soft matrices opens a broad spectrum of novel property combinations. However, one of the major challenges for these systems remains the compatibilization of particles with the surrounding matrix by proper surface functionalization. For silicon-based systems or liquid crystalline phases, polydimethylsiloxane (PDMS) brushes at the surface of particles increase the stability against particle agglomeration in such systems. Here, we report a novel approach for the functionalization of particles with a polysiloxane brush by surface-initiated ring-opening polymerization of a cyclosiloxane. For this purpose, surface hydroxy groups of silica and silica-coated hematite particles are used as initiators in combination with phosphazene bases as catalysts. The ring–chain equilibrium of a model-based solution polymerization is investigated in detail to find the appropriate reaction parameters. The corresponding molar masses are determined and compared by 1H-NMR and SEC measurements to confirm the underlying mechanism. In the resulting hybrid nanostructures, a covalently bound PDMS fraction is achieved up to 47 mass %.</jats:p>