Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mamiński, Mariusz L.

  • Google
  • 1
  • 1
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Poly-(3-ethyl-3-hydroxymethyl)oxetanes-Synthesis and adhesive interactions with polar substrates9citations

Places of action

Chart of shared publication
Parzuchowski, Paweł
1 / 9 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Parzuchowski, Paweł
OrganizationsLocationPeople

article

Poly-(3-ethyl-3-hydroxymethyl)oxetanes-Synthesis and adhesive interactions with polar substrates

  • Parzuchowski, Paweł
  • Mamiński, Mariusz L.
Abstract

<p>Hyperbranched polyoxetanes are a relatively new class of polymers. These are branched polyethers that are synthesized from oxetanes-four-member cyclic ethers bearing hydroxymethyl groups-via ring-opening polymerization. Four series of polyoxetanes were synthesized from 3-ethyl-3-(hydroxymethyl)oxetane and 1,1,1-tris(hydroxymethyl)propane as a core molecule. Reagents ratios ranged from 1:5 to 1:50, theoretical molar mass ranged from 714 g/mol to 5942 g/mol, and dispersities ranged from 1.77 to 3.75. The morphology of the macromolecules was investigated by a matrix-assisted laser desorption/ionization time of flight technique. The polyoxetanes' adhesive interactions with polar materials were analyzed and provided results as follows: the work of adhesion was 101-105 mJ/m<sup>2</sup>, the bond-line tensile shear strengths were 0.39-1.32 MPa, and there was a brittle fracture mode within the polymer. The findings confirmed a good adhesion to polar substrates, but further research on polyoxetane modifications toward a reduction of brittleness is necessary.</p>

Topics
  • impedance spectroscopy
  • morphology
  • polymer
  • strength