Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Manuel, Nuño-Donlucas Sergio

  • Google
  • 1
  • 4
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Development and Characterization of a Biodegradable PLA Food Packaging Hold Monoterpene–Cyclodextrin Complexes against Alternaria alternata52citations

Places of action

Chart of shared publication
Núñez-Delicado, Estrella
1 / 1 shared
Gabaldon, Jose Antonio
1 / 2 shared
Hector, Acevedo-Parra
1 / 1 shared
Friné, Velázquez-Contreras
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Núñez-Delicado, Estrella
  • Gabaldon, Jose Antonio
  • Hector, Acevedo-Parra
  • Friné, Velázquez-Contreras
OrganizationsLocationPeople

article

Development and Characterization of a Biodegradable PLA Food Packaging Hold Monoterpene–Cyclodextrin Complexes against Alternaria alternata

  • Núñez-Delicado, Estrella
  • Gabaldon, Jose Antonio
  • Manuel, Nuño-Donlucas Sergio
  • Hector, Acevedo-Parra
  • Friné, Velázquez-Contreras
Abstract

<jats:p>The fungi of the genus Alternaria are among the main pathogens causing post-harvest diseases and significant economic losses. The consumption of Alternaria contaminated foods may be a major risk to human health, as many Alternaria species produce several toxic mycotoxins and secondary metabolites. To protect consumer health and extend the shelf life of food products, the development of new ways of packaging is of outmost importance. The aim of this work was to investigate the antifungal capacity of a biodegradable poly(lactic acid) (PLA) package filled with thymol or carvacrol complexed in β-cyclodextrins (β-CDs) by the solubility method. Once solid complexes were obtained by spray drying, varying proportions (0.0%, 1.5%, 2.5%, and 5.0 wt%) of β-CD–thymol or β-CD–carvacrol were mixed with PLA for packaging development by injection process. The formation of stable complexes between β-CDs and carvacrol or thymol molecules was assessed by Fourier-transform infrared spectroscopy (FTIR). Mechanical, structural, and thermal characterization of the developed packaging was also carried out. The polymer surface showed a decrease in the number of cuts and folds as the amount of encapsulation increased, thereby reducing the stiffness of the packaging. In addition, thermogravimetric analysis (TGA) revealed a slight decrease in the temperature of degradation of PLA package as the concentration of the complexes increased, with β-CD–carvacrol or β-CDs–thymol complexes acting as plasticisers that lowered the intermolecular forces of the polymer chains, thereby improving the breaking point. Packages containing 2.5% and 5% β-CD–carvacrol, or 5% β-CD–thymol showed Alternaria alternata inhibition after 10 days of incubation revealing their potential uses in agrofood industry.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • thermogravimetry
  • drying
  • infrared spectroscopy