People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Sisi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Fused filament fabrication of copolyesters by understanding the balance of inter- and intra-layer weldingcitations
- 2021Lifting the quality of fused filament fabrication of polylactic acid based compositescitations
- 2020The transferability and design of commercial printer settings in PLA/PBAT fused filament fabricationcitations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)citations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
Places of action
Organizations | Location | People |
---|
article
Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)
Abstract
Based on differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, polarizing microscope (POM), and scanning electron microscopy (SEM) analysis, strategies to close the gap on applying conventional processing optimizations for the field of 3D printing and to specifically increase the mechanical performance of extrusion-based additive manufacturing of poly(lactic acid) (PLA) filaments by annealing and/or blending with poly(3-hydroxybutyrate) (PHB) were reported. For filament printing at 210 °C, the PLA crystallinity increased significantly upon annealing. Specifically, for 2 h of annealing at 100 °C, the fracture surface became sufficiently coarse such that the PLA notched impact strength increased significantly (15 kJ m−2). The Vicat softening temperature (VST) increased to 160 °C, starting from an annealing time of 0.5 h. Similar increases in VST were obtained by blending with PHB (20 wt.%) at a lower printing temperature of 190 °C due to crystallization control. For the blend, the strain at break increased due to the presence of a second phase, with annealing only relevant for enhancing the modulus.</jats:p>