Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paolucci, Fabio

  • Google
  • 3
  • 6
  • 108

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Influence of post-condensation on the crystallization kinetics of PA12:from virgin to reused powder50citations
  • 2019In Situ WAXD and SAXS during tensile deformation of moulded and sintered polyamide 128citations
  • 2019Influence of post-condensation on the crystallization kinetics of PA1250citations

Places of action

Chart of shared publication
Peters, Gerrit
1 / 2 shared
Van Mook, M. J. H.
1 / 1 shared
Govaert, Leon
1 / 3 shared
Peters, Gwm Gerrit
2 / 39 shared
Govaert, Leon E.
2 / 90 shared
Mook, M. J. H. Van
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Peters, Gerrit
  • Van Mook, M. J. H.
  • Govaert, Leon
  • Peters, Gwm Gerrit
  • Govaert, Leon E.
  • Mook, M. J. H. Van
OrganizationsLocationPeople

article

In Situ WAXD and SAXS during tensile deformation of moulded and sintered polyamide 12

  • Peters, Gwm Gerrit
  • Paolucci, Fabio
  • Govaert, Leon E.
Abstract

To provide knowledge to improve the mechanical performance of Polyamide 12 (PA12) sintered products, we have studied experimentally the mechanical response and structure development under constant strain rate of compression moulded and laser sintered PA12 by means of in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) experiments. It is found that at low temperatures, i.e., below the glass transition temperature, the brittle failure of laser sintered samples is determined by the fast formation of voids that originate at the beginning of the macroscopic plastic deformation. This effect appears to be faster at temperatures below room temperature and it is less effective at higher temperatures. When tested at 120 C, sintered PA12 shows a better mechanical response in terms of yield stress and a comparable strain at break with respect to moulded PA12. This can be explained by considering that sintered samples have slightly thicker crystals that can sustain higher stress at high temperature. However, this also leads to the formation of a larger number of voids at low testing temperatures. This work does not attempt to quantify the micromechanics behind crystals deformation and disruption, but it provides a deeper insight in the difference between the mechanical response of moulded and sintered PA12.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • glass
  • glass
  • laser emission spectroscopy
  • glass transition temperature
  • void
  • small angle x-ray scattering
  • static light scattering
  • wide-angle X-ray diffraction