People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marciniec, Bogdan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Preparation and Characterization of Composites Based on ABS Modified with Polysiloxane Derivativescitations
- 2024Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxanecitations
- 2022New Ceramics Precursors Containing Si and Ge Atoms—Cubic Germasilsesquioxanes—Synthesis, Thermal Decomposition and Spectroscopic Analysiscitations
- 2022Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO<inf>2</inf> Dispersants and Stabilizers for Pigmented Epoxy Resinscitations
- 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Studycitations
- 2020Highly bulky spherosilicates as functional additives for polyethylene processing--Influence on mechanical and thermal propertiescitations
- 2019Synthetic routes to silsesquioxane-based systems as photoactive materials and their precursorscitations
- 2019The influence of surface physicochemistry of solid fillers on dispersion in polyurea systems
- 2018Interfacial interactions in PTT–PTMO/polyhedral oligomeric silsesquioxane (POSS) nanocomposites and their impact on mechanical, thermal, and dielectric propertiescitations
- 2017Copolymers of ethylene with monoalkenyl- and monoalkenyl(siloxy)silsesquioxane (POSS) comonomers – Synthesis and characterizationcitations
- 2017Dynamic Heterogeneity in Random Copolymers of Polymethacrylates Bearing Different Polyhedral Oligomeric Silsesquioxane Moieties (POSS)citations
- 2015Polymethacrylates with polyhedral oligomeric silsesquioxane (POSS) moieties: Influence of spacer length on packing, thermodynamics, and dynamicscitations
- 2015Morphology and phase separation in PTT-block-PTMO nanocomposites containing POSS particlescitations
- 2013Polyurethanes modified with functionalized silsesquioxane - Synthesis and propertiescitations
Places of action
Organizations | Location | People |
---|
article
Synthetic routes to silsesquioxane-based systems as photoactive materials and their precursors
Abstract
Over the past two decades, organic optoelectronic materials have been considered very promising. The attractiveness of this group of compounds, regardless of their undisputable application potential, lies in the possibility of their use in the construction of organic-inorganic hybrid materials. This class of frameworks also considers nanostructural polyhedral oligomeric silsesquioxanes (POSSs) with "organic coronae" and precisely defined organic architectures between dispersed rigid silica cores. A significant number of papers on the design and development of POSS-based organic optoelectronic as well as photoluminescent (PL) materials have been published recently. In view of the scientific literature abounding with numerous examples of their application (i.e., as OLEDs), the aim of this review is to present efficient synthetic pathways leading to the formation of nanocomposite materials based on silsesquioxane systems that contain organic chromophores of complex nature. A summary of stoichiometric and predominantly catalytic methods for these silsesquioxane-based systems to be applied in the construction of photoactive materials or their precursors is given.</p>