People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Socol, Marcela
National Institute of Materials Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Editorial for Special Issue: “Thin Films Based on Nanocomposites (2nd Edition)”
- 2023Macrocyclic Compounds: Metal Oxide Particles Nanocomposite Thin Films Deposited by MAPLEcitations
- 2022Editorial for Special Issue: “Thin Films Based on Nanocomposites”
- 2021Organic Thin Films Deposited by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) for Photovoltaic Cell Applications: A Reviewcitations
- 2020Thin Films Based on Cobalt Phthalocyanine:C60 Fullerene:ZnO Hybrid Nanocomposite Obtained by Laser Evaporationcitations
- 2019Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetitecitations
- 2019Pulsed Laser Deposition of Transparent Conductive Oxides on UV-NIL Patterned Substrates for Optoelectronic Applications
- 2018Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substratescitations
- 2017Laser Prepared Thin Films for Optoelectronic Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetite
Abstract
<jats:p>Composite thin coatings of conductive polymer (polyaniline grafted lignin, PANI-LIG) embedded with aminoglycoside Gentamicin sulfate (GS) or magnetite nanoparticles loaded with GS (Fe3O4@GS) were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. The aim was to obtain such nanostructured coatings for titanium-based biomedical surfaces, which would induce multi-functional properties to implantable devices, such as the controlled release of the therapeutically active substance under the action of a magnetic and/or electric field. Thus, the unaltered laser transfer of the initial biomaterials was reported, and the deposited thin coatings exhibited an appropriate nanostructured surface, suitable for bone-related applications. The laser processing of PANI-LIG materials had a meaningful impact on the composites’ wettability, since the contact angle values corresponding to the composite laser processed materials decreased in comparison with pristine conductive polymer coatings, indicating more hydrophilic surfaces. The corrosion resistant structures exhibited significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans strains. In vitro cytotoxicity studies demonstrated that the PANI-LIG-modified titanium substrates can allow growth of bone-like cells. These results encourage further assessment of this type of biomaterial for their application in controlled drug release at implantation sites by external activation.</jats:p>