People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gontard, Nathalie, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2020Using life cycle assessment to quantify the environmental benefit of upcycling vine shoots as fillers in biocomposite packaging materialscitations
- 2020Physical–chemical and structural stability of PHBV/wheat straw fibers based biocomposites under food contact conditionscitations
- 2020Food-Grade PE Recycling: Effect of Nanoclays on the Decontamination Efficacycitations
- 2020Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomacescitations
- 2020Multi-faceted migration in food contact polyethylene-based nanocomposite packagingcitations
- 2020How Vine Shoots as Fillers Impact the Biodegradation of PHBV-Based Compositescitations
- 2020Evaluation of the Food Contact Suitability of Aged Bio-Nanocomposite Materials Dedicated to Food Packaging Applicationscitations
- 2019Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterificationcitations
- 2019The mixed impact of nanoclays on the apparent diffusion coefficient of additives in biodegradable polymers in contact with foodcitations
- 2019Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particlescitations
- 2018Safety assessment of the process ‘Gneuss 2’, based on Gneuss technology, used to recycle post‐consumer PET into food contact materials
- 2018Safety assessment of the process ‘Gneuss 1’, based on Gneuss technology, used to recycle post‐consumer PET into food contact materials
- 2018Dry fractionation of olive pomace for the development of food packaging biocompositescitations
- 2018How the shape of fillers affects the barrier properties of polymer/ non-porous particles nanocomposites: A reviewcitations
- 2018Dry fractionation of olive pomace as a sustainable process to produce fillers for biocompositescitations
- 2018How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageingcitations
- 2017Contribution of nanoclay to the additive partitioning in polymerscitations
- 2017Poly(3-hydroxybutyrate-co-hydroxyvalerate) and wheat straw fibers biocomposites produced by co-grinding: Processing and mechanical behaviorcitations
- 2017Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocompositescitations
- 2017Wheat gluten, a bio-polymer to monitor carbon dioxide in food packaging: Electric and dielectric characterizationcitations
- 2016Effect of nanoclay on the transfer properties of immanent additives in food packagescitations
- 2016Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocompositecitations
- 2016A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensorscitations
- 2016Plant polymer as sensing material: Exploring environmental sensitivity of dielectric properties using interdigital capacitors at ultra high frequencycitations
- 2016Wheat gluten, a bio-polymer layer to monitor relative humidity in food packaging: Electric and dielectric characterizationcitations
- 2016Water vapor sorption and diffusion in wheat straw particles and their impact on the mass transfer properties of biocompositescitations
- 2015On the extraction of cellulose nanowhiskers from food by-products and their comparative reinforcing effect on a polyhydroxybutyrate-co-valerate polymercitations
- 2013Water transport mechanisms in wheat gluten based (nano) composite materialscitations
- 2013Nanoparticle size and water diffusivity in nanocomposite agro-polymer based filmscitations
- 2013Protein-Based Nanocomposites for Food Packagingcitations
- 2013Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationshipscitations
- 2013Scientific Opinion on Flavouring Group Evaluation 12, Revision 4 (FGE.12Rev4): primary saturated or unsaturated alicyclic alcohols, aldehydes, acids and esters from chemical groups 1 and 7citations
- 2011Wheat gluten (WG)-based materials for food packagingcitations
- 2011Impact of high pressure treatment on the structure of montmorillonitecitations
- 2010Réduction de l'impact de l’utilisation des produits phytosanitaires: Contrôle de la libération dans le sol par un granulé protéique biodégradable nanocomposite
- 2010Effect of Novel Food Processing Methods on Packaging: Structure, Composition, and Migration Propertiescitations
- 2010Synthesis of nanocomposite films from wheat gluten matrix and MMT intercalated with different quaternary ammonium salts by way of hydroalcoholic solvent castingcitations
- 2010Wheat gluten nanocomposite films as food contact materials: migration tests and impact of a novel food stabilization technology (high pressure)citations
- 2005Ethylene permeability of wheat gluten film as a function of temperature and relative humiditycitations
- 2005Ethylene permeability of wheat gluten film as a function of temperature and relative humiditycitations
- 2004Effect of Temperature on Moisture Barrier Efficiency of Monoglyceride Edible Films in Cereal-Based Composite Foodscitations
Places of action
Organizations | Location | People |
---|
article
Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification
Abstract
Materials that are both biodegradable and bio-sourced are becoming serious candidates for substituting traditional petro-sourced plastics that accumulate in natural systems. New biocomposites have been produced by melt extrusion, using bacterial polyester (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) as a matrix and cellulose particles as fillers. In this study, gas-phase esterified cellulose particles, with palmitoyl chloride, were used to improve filler-matrix compatibility and reduce moisture sensitivity. Structural analysis demonstrated that intrinsic properties of the polymer matrix (crystallinity, and molecular weight) were not more significantly affected by the incorporation of cellulose, either virgin or grafted. Only a little decrease in matrix thermal stability was noticed, this being limited by cellulose grafting. Gas-phase esterification of cellulose improved the filler’s dispersion state and filler/matrix interfacial adhesion, as shown by SEM cross-section observations, and limiting the degradation of tensile properties (stress and strain at break). Water vapor permeability, moisture, and liquid water uptake of biocomposites were increased compared to the neat matrix. The increase in thermodynamic parameters was limited in the case of grafted cellulose, principally ascribed to their increased hydrophobicity. However, no significant effect of grafting was noticed regarding diffusion parameters.