Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gonzalez-Benito, Javier

  • Google
  • 3
  • 4
  • 109

Universidad Carlos III de Madrid

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Airbrushed Polysulfone (PSF)/Hydroxyapatite (HA) Nanocomposites: Effect of the Presence of Nanoparticles on Mechanical Behavior6citations
  • 2019PVDF/BaTiO<sub>3</sub>/carbon nanotubes ternary nanocomposites prepared by ball milling: Piezo and dielectric responses28citations
  • 2018Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging75citations

Places of action

Chart of shared publication
Olmos, Dania
2 / 4 shared
Sánchez, Freddy A.
1 / 1 shared
Martíneztarifa, Juan Manuel
1 / 1 shared
González-Gaitano, Gustavo
1 / 14 shared
Chart of publication period
2022
2019
2018

Co-Authors (by relevance)

  • Olmos, Dania
  • Sánchez, Freddy A.
  • Martíneztarifa, Juan Manuel
  • González-Gaitano, Gustavo
OrganizationsLocationPeople

article

Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging

  • Gonzalez-Benito, Javier
Abstract

<jats:p> Polymer composite materials based on polylactic acid (PLA) filled with titanium dioxide (TiO2) nanoparticles were prepared. The aim of this work was to investigate the antibacterial action of TiO2 against a strain of E. Coli (DH5α) to obtain information on their potential uses in food and agro-alimentary industry. PLA/TiO2 systems were prepared by a two-step process: Solvent casting followed by a hot-pressing step. Characterization was done as a function of particle size (21 nm and &lt; 100 nm) and particle content (0%, 1%, 5%, 10%, and 20%, wt %). Structural characterization carried out by X-ray diffraction (XRD) and Fourier Transformed Infrared spectroscopy (FTIR) did not reveal significant changes in polymer structure due to the presence of TiO2 nanoparticles. Thermal characterization indicated that thermal transitions, measured by differential scanning calorimetry (DSC), did not vary, irrespective of size or content, whereas thermogravimetric analysis (TGA) revealed a slight increase in the temperature of degradation with particle content. Bacterial growth and biofilm formation on the surface of the composites against DH5α Escherichia Coli was studied. Results suggested that the presence of TiO2 nanoparticles decreases the amount of extracellular polymeric substance (EPS) and limits bacterial growth. The inhibition distances estimated with the Kirby-Bauer were doubled when 1% TiO2 nanoparticles were introduced in PLA, though no significant differences were obtained for higher contents in TiO2 NPs.</jats:p>

Topics
  • nanoparticle
  • surface
  • polymer
  • x-ray diffraction
  • composite
  • thermogravimetry
  • solvent casting
  • differential scanning calorimetry
  • casting
  • titanium
  • infrared spectroscopy