Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Savović, Isidora

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Mode Coupling and Steady-State Distribution in Multimode Step-Index Organic Glass-Clad PMMA Fibers7citations

Places of action

Chart of shared publication
Djordjevich, Alexandar
1 / 7 shared
Savović, Svetislav
1 / 6 shared
Min, Rui
1 / 25 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Djordjevich, Alexandar
  • Savović, Svetislav
  • Min, Rui
OrganizationsLocationPeople

article

Mode Coupling and Steady-State Distribution in Multimode Step-Index Organic Glass-Clad PMMA Fibers

  • Savović, Isidora
  • Djordjevich, Alexandar
  • Savović, Svetislav
  • Min, Rui
Abstract

<jats:p>Mode coupling and power diffusion in multimode step-index (SI) organic glass-clad (OGC) PMMA fiber is examined in this study using the power flow equation (PFE). Using our previously proposed approach we determine the coupling coefficient D for this fiber. When compared to standard multimode SI PMMA fibers, the multimode SI OGC PMMA fiber has similar mode coupling strength. As a result, the fiber length required to achieve the steady-state distribution (SSD) in SI OGC PMMA fibers is similar to that required in standard SI PMMA fibers. We have confirmed that optical fibers with a plastic core show more intense mode coupling than those with a glass core, regardless of the cladding material. These findings could be valuable in communication and sensory systems that use multimode SI OGC PMMA fiber. In this work, we have demonstrated a successful employment of our previously proposed method for determination of the coupling coefficient D in multimode SI OGC PMMA fiber. This method has already been successfully employed in the previous research of mode coupling in multimode SI glass optical fibers, SI PMMA fibers and SI plastic-clad silica optical fibers.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • strength