People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wibowo, Andree
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Quantum Cascade Lasers Grown by Metalorganic Chemical Vapor Deposition on Foreign Substrates with Large Surface Roughness
Abstract
<jats:p>The surface morphology of a buffer template is an important factor in the heteroepitaxial integration of optoelectronic devices with a significant lattice mismatch. In this work, InP-based long-wave infrared (~8 µm) emitting quantum cascade lasers with active region designs lattice-matched to InP were grown on GaAs and Si substrates employing InAlGaAs step-graded metamorphic buffer layers, as a means to assess the impact of surface roughness on device performance. A room-temperature pulsed-operation lasing with a relatively good device performance was obtained on a Si template, even with a large RMS roughness of 17.1 nm over 100 µm2. Such results demonstrate that intersubband-operating devices are highly tolerant to large RMS surface roughness, even in the presence of a high residual dislocation density.</jats:p>