People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Löbmann, Korbinian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (49/49 displayed)
- 2024Exploring the effect of protein secondary structure on the solid state and physical stability of protein-based amorphous solid dispersionscitations
- 2024Investigating the influence of protein secondary structure on the dissolution behavior of β-lactoglobulin-based amorphous solid dispersionscitations
- 2023The effects of surfactants on the performance of polymer-based microwave-induced in situ amorphizationcitations
- 2022Development of a multiparticulate drug delivery system for in situ amorphisationcitations
- 2022Stabilizing Mechanisms of β-Lactoglobulin in Amorphous Solid Dispersions of Indomethacincitations
- 2021The Influence of Temperature and Viscosity of Polyethylene Glycol on the Rate of Microwave-Induced In Situ Amorphization of Celecoxibcitations
- 2021The Influence of Drug-Polymer Solubility on Laser-Induced In Situ Drug Amorphization Using Photothermal Plasmonic Nanoparticlescitations
- 2021The effect of the molecular weight of polyvinylpyrrolidone and the model drug on laser-induced in situ amorphizationcitations
- 2021Investigation into the role of the polymer in enhancing microwave-induced in situ amorphizationcitations
- 2021Investigation into the role of the polymer in enhancing microwave-induced in situ amorphizationcitations
- 2021Utilizing Laser Activation of Photothermal Plasmonic Nanoparticles to Induce On-Demand Drug Amorphization inside a Tabletcitations
- 2021Microwave-Induced in Situ Drug Amorphization Using a Mixture of Polyethylene Glycol and Polyvinylpyrrolidonecitations
- 2021The Use of Glycerol as an Enabling Excipient for Microwave-Induced In Situ Drug Amorphizationcitations
- 2021Studying the impact of the temperature and sorbed water during microwave-induced In Situ amorphizationcitations
- 2021Comparison of co-former performance in co-amorphous formulationscitations
- 2021Enabling formulations of aprepitantcitations
- 2020Hot Melt Coating of Amorphous Carvedilolcitations
- 2020The influence of drug and polymer particle size on the in situ amorphization using microwave irradiationcitations
- 2019Process Optimization and Upscaling of Spray-Dried Drug-Amino acid Co-Amorphous Formulationscitations
- 2019Influence of Glass Forming Ability on the Physical Stability of Supersaturated Amorphous Solid Dispersionscitations
- 2019In situ co-amorphisation in coated tablets – The combination of carvedilol with aspartic acid during immersion in an acidic mediumcitations
- 2019Co-former selection for co-amorphous drug-amino acid formulationscitations
- 2018Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacincitations
- 2018The Role of Glass Transition Temperatures in Coamorphous Drug-Amino Acid Formulationscitations
- 2018Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugscitations
- 2018In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-argininecitations
- 2018Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs.
- 2018The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formerscitations
- 2017Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymerscitations
- 2017Probing Pharmaceutical Mixtures during Milling:citations
- 2017Amorphization within the tabletcitations
- 2017Influence of preparation pathway on the glass forming abilitycitations
- 2017Performance comparison between crystalline and co-amorphous salts of indomethacin-lysinecitations
- 2016Influence of variation in molar ratio on co-amorphous drug-amino acid systemscitations
- 2016Glass forming ability of amorphous drugs investigated by continuous cooling- and isothermal transformationcitations
- 2016Development of a screening method for co-amorphous formulations of drugs and amino acidscitations
- 2016INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACINcitations
- 2016Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E POcitations
- 2016Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball millingcitations
- 2016Properties of the Sodium Naproxen-Lactose-Tetrahydrate Co-Crystal upon Processing and Storagecitations
- 2015Formation mechanism of coamorphous drug−amino acid mixturescitations
- 2015Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.
- 2015Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Dryingcitations
- 2015Evaluation of drug-polymer solubility curves through formal statistical analysiscitations
- 2015Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-argininecitations
- 2015Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopycitations
- 2014The influence of pressure on the intrinsic dissolution rate of amorphous indomethacincitations
- 2013Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1citations
- 2011Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxencitations
Places of action
Organizations | Location | People |
---|
article
The influence of pressure on the intrinsic dissolution rate of amorphous indomethacin
Abstract
<p>New drug candidates increasingly tend to be poorly water soluble. One approach to increase their solubility is to convert the crystalline form of a drug into the amorphous form. Intrinsic dissolution testing is an efficient standard method to determine the intrinsic dissolution rate (IDR) of a drug and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP) nor the European Pharmacopeia (Ph.Eur) state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling) indomethacin (IND), a glass solution of IND and poly(vinylpyrrolidone) (PVP) and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD) and the final compacts were visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND-PVP. This was in line with the observation of similar surface properties of the compacts. However, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage of the amorphous form might be underestimated. It is thus suggested that for a reasonable interpretation of the IDR, surface properties of the different analyzed samples should be investigated and for amorphous samples the IDR should be measured also as a function of the compression pressure used to prepare the solid sample for IDR testing.</p>