Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Núñez, Juan Manuel

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphates4citations

Places of action

Chart of shared publication
Sancho, María Del Mar Jovani
1 / 1 shared
Banerjee, Avijit
1 / 21 shared
Sauro, Salvatore
1 / 16 shared
Chou, Yu Fu
1 / 1 shared
Luzi, Arlinda
1 / 1 shared
Alambiaga-Caravaca, Adrián M.
1 / 1 shared
López-Castellano, Alicia
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sancho, María Del Mar Jovani
  • Banerjee, Avijit
  • Sauro, Salvatore
  • Chou, Yu Fu
  • Luzi, Arlinda
  • Alambiaga-Caravaca, Adrián M.
  • López-Castellano, Alicia
OrganizationsLocationPeople

article

Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphates

  • Sancho, María Del Mar Jovani
  • Núñez, Juan Manuel
  • Banerjee, Avijit
  • Sauro, Salvatore
  • Chou, Yu Fu
  • Luzi, Arlinda
  • Alambiaga-Caravaca, Adrián M.
  • López-Castellano, Alicia
Abstract

<p>This study analyse the type of release kinetic of specific monomers from dental resin composites containing various fluoride-doped calcium phosphates. The release behavior of urethane dimethacrylate (UDMA), ethoxylated bisphenol-A dimethacrylate (bis-EMA) and 1.6-hexanediol ethoxylate diacrylate (HEDA) was evaluated over a period of 35 days. Two tailored calcium phosphates doped with different concentrations of fluoride salts (VS10% and VS20%) were prepared and incorporated in the dimethacrylate matrix at various concentrations to generate a range of experimental composites. The release kinetics were characterized using mathematical models such as zero-order, first-order, Peppas and Higuchi models. The results showed that the first-order model best described the release kinetics. UDMA and HEDA exhibited significant differences in release compared to bis-EMA from day 1, while no significant differences were observed between UDMA and HEDA, except on day 35, when UDMA exhibited a higher release rate than HEDA. When comparing the release of each monomer, VS20-R20% had the highest total release percentage, with 3.10 ± 0.25%, whereas the composite VS10-R5% showed the lowest release percentage, with a total of 1.66 ± 0.08%. The release kinetics were influenced by the composition of the resin composites and the presence of calcium fluoride and sodium fluoride in the calcium phosphate played a role in the maximum amounts of monomer released. In conclusion, the release of monomers from the tested resin composites followed a first-order kinetic behaviour, with an initial rapid release that decreased over time. The composition of the resin monomers and the presence of fluoride salts influenced the release kinetics. The VS10-R5% and VS10-R10% resin composites exhibited the lowest total monomer release, suggesting its potential favourable composition with reduced monomer elution. These findings contribute to understanding the release behavior of dental resin composites and provide insights for the development of resin-based bioactive dental materials.</p>

Topics
  • Sodium
  • composite
  • Calcium
  • resin
  • elution