People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Banerjee, Avijit
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphatescitations
- 2021Commercially available ion-releasing dental materials and cavitated carious lesionscitations
- 2021Conventional Glass-ionomer Cements: A Guide for Practitionerscitations
- 2020An in vitro assessment of the physical properties of manually- mixed and encapsulated glass-ionomer cementscitations
- 2020Chemo-Mechanical Characterisation of Carious Dentine Using Raman Microscopy and Knoop Microhardness.
- 2020Chemo-mechanical characterization of carious dentine using Raman microscopy and Knoop microhardnesscitations
- 2019In vitro compressive strength and edge stability testing of directly repaired glass-ionomer cementscitations
- 2018In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan
- 2018Remineralisation of enamel white spot lesions pre-treated with chitosan in the presence of salivary pelliclecitations
- 2018In vitro remineralization of caries-affected dentin after selective carious tissue removalcitations
- 2016The effect of air-abrasion on the susceptibility of sound enamel to acid challengecitations
- 2015Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralizationcitations
- 2014Enamel white spot lesions can remineralise using bio-active glass and polyacrylic acid-modified bio-active glass powderscitations
- 2013In Vitro Effect of Air-abrasion Operating Parameters on Dynamic Cutting Characteristics of Alumina and Bio-active Glass Powderscitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasioncitations
- 2011Minimally invasive caries removal using bio-active glass air-abrasioncitations
- 2010Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic reviewcitations
- 2009An in vitro evaluation of the efficiency of an air-abrasion system using helium as a propellantcitations
- 2008An in vitro investigation of the effect and retention of bioactive glass air-abrasive on sound and carious dentinecitations
- 2006Microhardness as a predictor of sound and carious dentine removal using alumina air abrasioncitations
Places of action
Organizations | Location | People |
---|
article
Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphates
Abstract
<p>This study analyse the type of release kinetic of specific monomers from dental resin composites containing various fluoride-doped calcium phosphates. The release behavior of urethane dimethacrylate (UDMA), ethoxylated bisphenol-A dimethacrylate (bis-EMA) and 1.6-hexanediol ethoxylate diacrylate (HEDA) was evaluated over a period of 35 days. Two tailored calcium phosphates doped with different concentrations of fluoride salts (VS10% and VS20%) were prepared and incorporated in the dimethacrylate matrix at various concentrations to generate a range of experimental composites. The release kinetics were characterized using mathematical models such as zero-order, first-order, Peppas and Higuchi models. The results showed that the first-order model best described the release kinetics. UDMA and HEDA exhibited significant differences in release compared to bis-EMA from day 1, while no significant differences were observed between UDMA and HEDA, except on day 35, when UDMA exhibited a higher release rate than HEDA. When comparing the release of each monomer, VS20-R20% had the highest total release percentage, with 3.10 ± 0.25%, whereas the composite VS10-R5% showed the lowest release percentage, with a total of 1.66 ± 0.08%. The release kinetics were influenced by the composition of the resin composites and the presence of calcium fluoride and sodium fluoride in the calcium phosphate played a role in the maximum amounts of monomer released. In conclusion, the release of monomers from the tested resin composites followed a first-order kinetic behaviour, with an initial rapid release that decreased over time. The composition of the resin monomers and the presence of fluoride salts influenced the release kinetics. The VS10-R5% and VS10-R10% resin composites exhibited the lowest total monomer release, suggesting its potential favourable composition with reduced monomer elution. These findings contribute to understanding the release behavior of dental resin composites and provide insights for the development of resin-based bioactive dental materials.</p>