People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sauro, Salvatore
Universidad Cardenal Herrera CEU
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Experimental Composite Resin with Myristyltrimethylammonium Bromide (MYTAB) and Alpha-Tricalcium Phosphate (α-TCP): Antibacterial and Remineralizing Effect.citations
- 2023Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphatescitations
- 2022Physical-chemical and microbiological performances of graphene-doped PMMA for CAD/CAM applications before and after accelerated aging protocolscitations
- 2022RoBDEMAT: A risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviewscitations
- 2021Commercially available ion-releasing dental materials and cavitated carious lesionscitations
- 2020Effects of Surface Treatments of Glass Fiber-Reinforced Post on Bond Strength to Root Dentine: A Systematic Review
- 2020Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealercitations
- 2020In vitro bonding performance of modern self-adhesive resin cements and conventional resin-modified glass ionomer cements to prosthetic substratescitations
- 2019Boron Nitride Nanotubes as Filler for Resin-Based Dental Sealantscitations
- 2019Co-blend application mode of bulk fill composite resincitations
- 2016Modifications in Glass Ionomer Cements:Nano-Sized Fillers and Bioactive Nanoceramicscitations
- 2013Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfacescitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materialscitations
- 2011Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materialscitations
- 2006Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resinscitations
Places of action
Organizations | Location | People |
---|
article
Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphates
Abstract
<p>This study analyse the type of release kinetic of specific monomers from dental resin composites containing various fluoride-doped calcium phosphates. The release behavior of urethane dimethacrylate (UDMA), ethoxylated bisphenol-A dimethacrylate (bis-EMA) and 1.6-hexanediol ethoxylate diacrylate (HEDA) was evaluated over a period of 35 days. Two tailored calcium phosphates doped with different concentrations of fluoride salts (VS10% and VS20%) were prepared and incorporated in the dimethacrylate matrix at various concentrations to generate a range of experimental composites. The release kinetics were characterized using mathematical models such as zero-order, first-order, Peppas and Higuchi models. The results showed that the first-order model best described the release kinetics. UDMA and HEDA exhibited significant differences in release compared to bis-EMA from day 1, while no significant differences were observed between UDMA and HEDA, except on day 35, when UDMA exhibited a higher release rate than HEDA. When comparing the release of each monomer, VS20-R20% had the highest total release percentage, with 3.10 ± 0.25%, whereas the composite VS10-R5% showed the lowest release percentage, with a total of 1.66 ± 0.08%. The release kinetics were influenced by the composition of the resin composites and the presence of calcium fluoride and sodium fluoride in the calcium phosphate played a role in the maximum amounts of monomer released. In conclusion, the release of monomers from the tested resin composites followed a first-order kinetic behaviour, with an initial rapid release that decreased over time. The composition of the resin monomers and the presence of fluoride salts influenced the release kinetics. The VS10-R5% and VS10-R10% resin composites exhibited the lowest total monomer release, suggesting its potential favourable composition with reduced monomer elution. These findings contribute to understanding the release behavior of dental resin composites and provide insights for the development of resin-based bioactive dental materials.</p>