Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santos, Rafaela Said Dos

  • Google
  • 1
  • 11
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin10citations

Places of action

Chart of shared publication
Caetano, Wilker
1 / 3 shared
Baesso, Mauro Luciano
1 / 2 shared
Pozza, Magali Soares Dos Santos
1 / 1 shared
Bruschi, Marcos Luciano
1 / 4 shared
Silva, Jéssica Bassi Da
1 / 1 shared
Castro-Hoshino, Lidiane Vizioli De
1 / 2 shared
Cardozo-Filho, Lucio
1 / 2 shared
Marcelo Jaski, Jonas
1 / 1 shared
Campanholi, Katieli Da Silva Souza
1 / 1 shared
Junior, Ranulfo Combuca Da Silva
1 / 1 shared
Oliveira, Mariana Carla De
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Caetano, Wilker
  • Baesso, Mauro Luciano
  • Pozza, Magali Soares Dos Santos
  • Bruschi, Marcos Luciano
  • Silva, Jéssica Bassi Da
  • Castro-Hoshino, Lidiane Vizioli De
  • Cardozo-Filho, Lucio
  • Marcelo Jaski, Jonas
  • Campanholi, Katieli Da Silva Souza
  • Junior, Ranulfo Combuca Da Silva
  • Oliveira, Mariana Carla De
OrganizationsLocationPeople

article

Thermo and Photoresponsive Emulgel Loaded with Copaifera reticulata Ducke and Chlorophylls: Rheological, Mechanical, Photodynamic and Drug Delivery Properties in Human Skin

  • Caetano, Wilker
  • Santos, Rafaela Said Dos
  • Baesso, Mauro Luciano
  • Pozza, Magali Soares Dos Santos
  • Bruschi, Marcos Luciano
  • Silva, Jéssica Bassi Da
  • Castro-Hoshino, Lidiane Vizioli De
  • Cardozo-Filho, Lucio
  • Marcelo Jaski, Jonas
  • Campanholi, Katieli Da Silva Souza
  • Junior, Ranulfo Combuca Da Silva
  • Oliveira, Mariana Carla De
Abstract

<jats:p>Recently, the number of new cases of cutaneous leishmaniasis has been of concern among health agencies. Research that offers new therapeutic alternatives is advantageous, especially those that develop innovative drugs. Therefore, this paper presents the incorporation of Copaifera reticulata Ducke and chlorophyll extract into Pluronic®® F127 and Carbopol gels, under optimized polymer quantities. The chlorophyll extract (rich in photosensitizing compounds) was obtained by continuous-flow pressurized liquid extraction (PLE), a clean, environmentally friendly method. The system aims to act as as a leishmanicidal, cicatrizant, and antibiotic agent, with reinforcement of the photodynamic therapy (PDT) action. Rheological and mechanical analyses, permeation studies and bioadhesiveness analyses on human skin, and PDT-mediated activation of Staphylococcus aureus were performed. The emulgels showed gelation between 13° and 15 °C, besides pseudoplastic and viscoelastic properties. Furthermore, the systems showed transdermal potential, by releasing chlorophylls and C. reticulata Ducke into the deep layers of human skin, with good bioadhesive performance. The application of PDT reduced three logarithmic colony-forming units of S. aureus bacteria. The results support the potential of the natural drug for future clinical trials in treating wounds and cutaneous leishmania.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • extraction
  • forming
  • activation
  • gelation