People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, Salette
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Rational design of magnetoliposomes for enhanced interaction with bacterial membrane modelscitations
- 2022Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly(vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applicationscitations
- 2021Topical Delivery of Niacinamide to Skin Using Hybrid Nanogels Enhances Photoprotection Effectcitations
- 2021Polymeric Carriers for Biomedical and Nanomedicine Applicationcitations
- 2018Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeabilitycitations
- 2018Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosiscitations
- 2017Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cellscitations
- 2016Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cellscitations
- 2014Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic applicationcitations
Places of action
Organizations | Location | People |
---|
article
Topical Delivery of Niacinamide to Skin Using Hybrid Nanogels Enhances Photoprotection Effect
Abstract
Niacinamide (NIA) has been widely used in halting the features of ageing by acting as an antioxidant and preventing dehydration. NIA's physicochemical properties suggest difficulties in surpassing the barrier imposed by the stratum corneum layer to reach the target in the skin. To improve cutaneous delivery of NIA, a hybrid nanogel was designed using carrageenan and polyvinylpyrrolidone polymers combined with jojoba oil as a permeation enhancer. Three different types of transethosomes were prepared by the thin-film hydration method, made distinct by the presence of either an edge activator or a permeation enhancer, to allow for a controlled delivery of NIA. Formulations were characterized by measurements of size, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity, and by evaluating their chemical interactions and morphology. Skin permeation assays were performed using Franz diffusion cells. The hybrid hydrogels exhibited robust, porous, and highly aligned macrostructures, and when present, jojoba oil changed their morphology. Skin permeation studies with transethosomes-loaded hydrogels showed that nanogels per se exhibit a more controlled and enhanced permeation, in particular when jojoba oil was present in the transethosomes. These promising nanogels protected the human keratinocytes from UV radiation, and thus can be added to sunscreens or after-sun lotions to improve skin protection.