People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caraballo, Isidoro
Universidad de Sevilla
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
A Biodegradable Copolyester, Poly(butylene succinate-co-ε-caprolactone), as a High Efficiency Matrix Former for Controlled Release of Drugs
Abstract
<jats:p>A biodegradable copolyester, poly(butylene succinate-co-ε-caprolactone) (PBS_CL), was used for first time as an excipient for pharmaceutical dosage forms using direct compression and hot processing techniques (ultrasound-assisted compression (USAC) and hot melt extrusion (HME)). Robust binary systems were achieved with hot processing techniques, allowing a controlled release of the drug. With only 12% v/v of PBS_CL, controlled release forms were obtained using USAC whereas in HME over 34% v/v of excipient is necessary. Amounts over 23% v/v allowed a long-extended release for more than 72 h following diffusional kinetic. Thanks to the high melting point of theophylline and the physicochemical properties of PBS_CL selected and synthesized, the structure of the excipient inside the USAC tablets and HME filaments corresponds to a continuum medium. A percolation threshold around 23% v/v was estimated, which agrees with a continuum percolation model. The polymer shows a high excipient efficiency value using HME and USAC. A nanostructured matrix with wall thicknesses lower than 0.1 µm was obtained. This leads to a very effective coating of the drug particles by the excipient, providing a slow and reproducible release. The present study therefore supports the use of PBS_CL, for the preparation of controlled release dosage forms using hot processing techniques.</jats:p>