People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Irfan, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Oxidized alginate-gelatin (ADA-GEL)/silk fibroin/Cu-Ag doped mesoporous bioactive glass nanoparticle-based hydrogels for potential wound care treatmentscitations
- 2024Utilization of NiO-rGO Nanoarchitectures-Based Composite Electrodes for High-Performance Electrochemical Applications
- 2023Harnessing the Antimicrobial Potential of Natural Starch and Mint Extract in PVA-Based Biodegradable films against Staphylococcus aureus bacteriacitations
- 2023Indoor water splitting for hydrogen production through electrocatalysis using composite metal oxide catalystscitations
- 2023Microencapsulation based fire retardant eco-friendly jute compositecitations
- 2023Temperature-Properties Relationships of Martensitic Stainless Steel for Improved Utilization in Surgical Tools
- 2022Zn–Mn-Doped Mesoporous Bioactive Glass Nanoparticle-Loaded Zein Coatings for Bioactive and Antibacterial Orthopedic Implantscitations
- 2022Assessing the Synergistic Activity of Clarithromycin and Therapeutic Oils Encapsulated in Sodium Alginate Based Floating Microbeadscitations
- 2022Electrospun Networks of ZnO-SnO2 Composite Nanowires as Electron Transport Materials for Perovskite Solar Cellscitations
- 2021Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterizationcitations
- 2021<i>Moringa oleifera</i> gum based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSAcitations
- 2018Comparative Experimental Study of Tribo-Mechanical Performance of Low-Temperature PVD Based TiN Coated PRCL Systems for Diesel Enginecitations
- 2018Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu2O–Cu nanocompositescitations
- 2017Characterization of antibacterial silver nanocluster/silica composite coating on high performance Kevlar® textilecitations
- 2015Bisphenol A based polyester binder as an effective interlaminar toughenercitations
- 2012Lateral spreading of a fiber bundle via mechanical meanscitations
Places of action
Organizations | Location | People |
---|
article
Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterization
Abstract
<jats:p>Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were −26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film’s disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.</jats:p>